引入numpy數組
import numpy as np
建立numpy數組函數
countries = np.array([ 'Afghanistan', 'Albania', 'Algeria', 'Angola', 'Argentina', 'Armenia', 'Australia', 'Austria', 'Azerbaijan', 'Bahamas', 'Bahrain', 'Bangladesh', 'Barbados', 'Belarus', 'Belgium', 'Belize', 'Benin', 'Bhutan', 'Bolivia', 'Bosnia and Herzegovina' ]) employment = np.array([ 55.70000076, 51.40000153, 50.5 , 75.69999695, 58.40000153, 40.09999847, 61.5 , 57.09999847, 60.90000153, 66.59999847, 60.40000153, 68.09999847, 66.90000153, 53.40000153, 48.59999847, 56.79999924, 71.59999847, 58.40000153, 70.40000153, 41.20000076 ])
獲取數組中某項code
print countries[0] print countries[3]
截取數組中的某一段orm
print countries[0:3] print countries[:3] print countries[17:] print countries[:]
獲取numpy數組的數據類型索引
print countries.dtype print employment.dtype print np.array([0, 1, 2, 3]).dtype print np.array([1.0, 1.5, 2.0, 2.5]).dtype print np.array([True, False, True]).dtype print np.array(['AL', 'AK', 'AZ', 'AR', 'CA']).dtype
循環numpy數組form
for country in countries: print 'Examining country {}'.format(country) for i in range(len(countries)): country = countries[i] country_employment = employment[i] print 'Country {} has employment {}'.format(country, country_employment)
numpy的一些內置函數()import
print employment.mean() #取平均數 print employment.std() #獲取標準差 print employment.max() #取最大值 print employment.sum() #求和
獲取最大項的索引值循環
i = employment.argmax(); #argmax()方法獲取employment數組中的最大一項的位置 max_value = employment[i] max_country = countries[i]