求解最大子序列和

 算法是爲求解一個問題須要遵循的、被清楚地指定的簡單的指令的集合。對於一個問題,一旦給定某種算法而且肯定是正確的,那麼重要的一步是肯定該算法將須要多少諸如時間和空間的問題,也就是要分析該算法的時間複雜度和空間複雜度,時間複雜度低和空間複雜度低就表明該算法是好的,但咱們要努力找到最優的算法。下面來看看最大子序列和問題的最優求解算法,用php實現了php

function maxSubSum($arr) {
    $maxSum = $sum = $leftIndex = $rightIndex = 0;
    $flag   = false;
    foreach ($arr as $key=>$value) {
        $sum += $value;
        if ($sum > $maxSum) {
            $maxSum = $sum;
            if($flag) {
                $leftIndex = $key;
                $flag   = false;
            }
            $rightIndex = $key;
        }

        if($sum <0) {
            $sum = 0;
            $maxSum = 0;
            $flag = true;
        }
    }
    return array_slice($arr,$leftIndex,($rightIndex - $leftIndex)+1);
}

再來看看python實現python

#!/usr/bin/python

def findMaxSubArray( inputList ):
    if ( len( inputList ) == 0 ):
        return inputList
    
    middle = len( inputList ) / 2
    leftSum,rightSum,crossingSum,tmpSum = 0,0,0,0
    leftIndex,rightIndex = 0,len(inputList)
    
    leftSum = sum(inputList[0:middle])
    rightSum = sum(inputList[middle+1:])
    tmpIndex = middle -1
    while ( tmpIndex >0):
        tmpSum +=inputList[tmpIndex]
        if(tmpSum > leftSum):
            leftIndex = tmpIndex
            break;
        tmpIndex = tmpIndex - 1

    tmpIndex = middle+1
    while (tmpIndex < len( inputList )):
        tmpSum += inputList[tmpIndex]
        if( tmpSum > rightSum ):
            rightIndex = tmpIndex
            break;
        tmpIndex = tmpIndex + 1
    return inputList[leftIndex:rightIndex]

if __name__ == '__main__':
    inputList = [-1,-2,-4,-8,-3,-10,-13,-56,-33,-2,-4,-45,-55,-12,-3]
    #inputList = [1,2,-4,8,4,0,-10,3,56,33,2,4,-45,55,0,-12,3]
    print findMaxSubArray ( inputList )

最後我想請教一個問題,爲何求餘運算耗費很大,知道原理的請解答一下。算法

相關文章
相關標籤/搜索