7月5號第二次直播學習筆記

一:alex更濃的雞湯html

  alex爲咱們分享了他本身的職業發展歷程,爲咱們點出一些職場上的重要關注點,非常收益,尤爲是那一句‘你爲何不受到關注’印象深入,最後alex指出思惟的升級和改變給本身的重要意義,深受啓發,感謝!git

二:Selenium基礎知識點的學習github

  Selenium是一個第三方模塊,能夠徹底模擬用戶在瀏覽器上操做(在瀏覽器上點點點)。web

  1,安裝chrome

    - pip install seleniumcanvas

  2,優缺點api

    -無需查看和肯定請求頭請求體等數據細節,直接模擬人點擊瀏覽器的行爲瀏覽器

    -但效率不高cookie

  3,依賴驅動:app

       Firefox
        https://github.com/mozilla/geckodriver/releases
      Chrome
        http://chromedriver.storage.googleapis.com/index.html

  4,與selenium相關的基本操做

from selenium import webdriver

# 配置驅動
#驅動必定要本身下載並放在一個目錄,不然會出錯
option = webdriver.ChromeOptions() driver = webdriver.Chrome('/Users/wupeiqi/drivers/chromedriver', chrome_options=option) # 1. 控制瀏覽器打開指定頁面 driver.get("https://dig.chouti.com/all/hot/recent/1") # 2. 找到登陸按鈕 btn_login = driver.find_element_by_xpath('//*[@id="login-link-a"]') # 3. 點擊按鈕 btn_login.click() # 4. 找到手機標籤 input_user = driver.find_element_by_xpath('//*[@id="mobile"]') # 5. 找到密碼標籤 input_pwd = driver.find_element_by_xpath('//*[@id="mbpwd"]') # 6. 輸入用戶名 input_user.send_keys('13121758648') # 7. 輸入密碼 input_pwd.send_keys('woshiniba') # 8. 點擊登陸按鈕 input_submit = driver.find_element_by_xpath( '//*[@id="footer-band"]/div[5]/div/div/div[1]/div[2]/div[4]/div[2]/div/span[1]') input_submit.click() print(driver.get_cookies()) # # 9. 點擊跳轉 # news = driver.find_element_by_xpath('//*[@id="newsContent20646261"]/div[1]/a[1]') # # news.click() # driver.execute_script("arguments[0].click();", news) # 10.管理瀏覽器 # driver.close()

三:破解路飛官網滑動驗證碼

  peiqi老師爲咱們帶來的精彩的講解,從__main__的主函數調用開始,先講了圖片的截取和距離的測算,接下來分析了怎麼模擬人類行爲的滑動過程,經過速度和加速度的空值實現,並且會故意製造匹配以後的小幅振動行爲,最後點擊肯定就能夠破解該驗證碼,重點是像素的選擇和速度的調節,感謝!

from selenium import webdriver
from selenium.webdriver import ActionChains
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.wait import WebDriverWait
import os
import shutil
from PIL import Image
import time


def get_snap(driver):
    driver.save_screenshot('full_snap.png')
    page_snap_obj = Image.open('full_snap.png')

    return page_snap_obj


def get_image(driver):
    img = driver.find_element_by_class_name('geetest_canvas_img')
    time.sleep(2)
    location = img.location
    size = img.size

    left = location['x']
    top = location['y']
    right = left + size['width']
    bottom = top + size['height']

    page_snap_obj = get_snap(driver)

    image_obj = page_snap_obj.crop((left * 2, top * 2, right * 2, bottom * 2))
    # image_obj.show()
    with open('code.png', 'wb') as f:
        image_obj.save(f, format='png')
    return image_obj


def get_distance(image1, image2):
    # start = 0
    # threhold = 70
    # for i in range(start, image1.size[0]):
    #     for j in range(0, image1.size[1]):
    #         rgb1 = image1.load()[i, j]
    #         rgb2 = image2.load()[i, j]
    #         res1 = abs(rgb1[0] - rgb2[0])
    #         res2 = abs(rgb1[1] - rgb2[1])
    #         res3 = abs(rgb1[2] - rgb2[2])
    #         # print(res1,res2,res3)
    #         if not (res1 < threhold and res2 < threhold and res3 < threhold):
    #             print(111111, i, j)
    #             return i - 13
    # print(2222, i, j)
    # return i - 13
    start = 0
    threhold = 70
    v = []
    for i in range(start, image1.size[0]):
        for j in range(0, image1.size[1]):
            rgb1 = image1.load()[i, j]
            rgb2 = image2.load()[i, j]
            res1 = abs(rgb1[0] - rgb2[0])
            res2 = abs(rgb1[1] - rgb2[1])
            res3 = abs(rgb1[2] - rgb2[2])

            if not (res1 < threhold and res2 < threhold and res3 < threhold):
                print(i)
                if i not in v:
                    v.append(i)

    stop = 0
    for i in range(0, len(v)):
        val = i + v[0]
        if v[i] != val:
            stop = v[i]
            break

    width = stop - v[0]
    print(stop, v[0], width)
    return width


def get_tracks(distance):
    import random
    exceed_distance = random.randint(0, 5)
    distance += exceed_distance  # 先滑過一點,最後再反着滑動回來
    v = 0
    t = 0.2
    forward_tracks = []

    current = 0
    mid = distance * 3 / 5
    while current < distance:
        if current < mid:
            a = random.randint(1, 3)
        else:
            a = random.randint(1, 3)
            a = -a
        s = v * t + 0.5 * a * (t ** 2)
        v = v + a * t
        current += s
        forward_tracks.append(round(s))

    # 反着滑動到準確位置
    v = 0
    t = 0.2
    back_tracks = []

    current = 0
    mid = distance * 4 / 5
    while abs(current) < exceed_distance:
        if current < mid:
            a = random.randint(1, 3)
        else:
            a = random.randint(-3, -5)
            a = -a
        s = -v * t - 0.5 * a * (t ** 2)
        v = v + a * t
        current += s
        back_tracks.append(round(s))
    return {'forward_tracks': forward_tracks, 'back_tracks': list(reversed(back_tracks))}


def crack(driver):  # 破解滑動認證
    # 一、點擊按鈕,獲得沒有缺口的圖片
    button = driver.find_element_by_xpath('//*[@id="embed-captcha"]/div/div[2]/div[1]/div[3]')
    button.click()

    # 二、獲取沒有缺口的圖片
    image1 = get_image(driver)

    # 三、點擊滑動按鈕,獲得有缺口的圖片
    button = driver.find_element_by_class_name('geetest_slider_button')
    button.click()

    # 四、獲取有缺口的圖片
    image2 = get_image(driver)

    # 五、對比兩種圖片的像素點,找出位移
    distance = get_distance(image1, image2)
    print(distance)
    #
    # 六、模擬人的行爲習慣,根據總位移獲得行爲軌跡
    tracks = get_tracks(int(distance / 2))

    # 七、按照行動軌跡先正向滑動,後反滑動
    button = driver.find_element_by_class_name('geetest_slider_button')
    ActionChains(driver).click_and_hold(button).perform()

    # 正常人類老是自信滿滿地開始正向滑動,自信地表現是瘋狂加速
    for track in tracks['forward_tracks']:
        ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform()

    # 結果傻逼了,正常的人類停頓了一下,回過神來發現,臥槽,滑過了,而後開始反向滑動
    time.sleep(0.5)
    for back_track in tracks['back_tracks']:
        ActionChains(driver).move_by_offset(xoffset=back_track, yoffset=0).perform()
    #
    # # 小範圍震盪一下,進一步迷惑極驗後臺,這一步能夠極大地提升成功率
    ActionChains(driver).move_by_offset(xoffset=3, yoffset=0).perform()
    ActionChains(driver).move_by_offset(xoffset=-3, yoffset=0).perform()

    # # 成功後,騷包人類總喜歡默默地欣賞一下本身拼圖的成果,而後依依不捨地鬆開那隻髒手
    time.sleep(0.5)
    ActionChains(driver).release().perform()


def login_luffy(username, password):
    driver = webdriver.Chrome('/Users/wupeiqi/drivers/chromedriver')
    driver.set_window_size(960, 800)
    try:
        # 一、輸入帳號密碼回車
        driver.implicitly_wait(3)
        driver.get('https://www.luffycity.com/login')

        input_username = driver.find_element_by_xpath('//*[@id="router-view"]/div/div/div[2]/div[2]/input[1]')
        input_pwd = driver.find_element_by_xpath('//*[@id="router-view"]/div/div/div[2]/div[2]/input[2]')

        input_username.send_keys(username)
        input_pwd.send_keys(password)

        # 二、破解滑動認證
        crack(driver)

        time.sleep(10)  # 睡時間長一點,肯定登陸成功
    finally:
        pass
        # driver.close()


if __name__ == '__main__':
    login_luffy(username='wupeiqi', password='123123123')

 

  四:總結

    經過selenium模擬人類單機瀏覽器的行爲,破解滑動驗證碼,讓我有get到了爬蟲的一個本領,首先須要掌握selenium點擊行爲的通常模式,最後能夠好好的參考peiqi老師的代碼,做爲模板用到之後的工做中,頗有幫助,謝謝!下一步想再學學其餘驗證碼的破解方式,多多益善!

相關文章
相關標籤/搜索