先運行下咱們的第一個demo:python
import tensorflow as tf
import numpy as np
#creat data
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data*0.1+0.3
#creat tensorflow structure start #
Weights = tf.Variable(tf.random_uniform([1],-1.0,1.0))
biases = tf.Variable(tf.zeros([1]))
y = Weights*x_data+biases
loss = tf.reduce_mean(tf.square(y-y_data)) #cost function
optimizer = tf.train.GradientDescentOptimizer(0.5) #with gradient decent method & 0.5 is the learning rate
train = optimizer.minimize(loss) #minimize the cost funtion
init = tf.global_variables_initializer() ##???????????
#creat tensorflow structure end #
sess = tf.Session()
sess.run(init) #Very Important ---activate the netrul network
for step in range(201):
sess.run(train)
if step % 20 == 0:
print (step,sess.run(Weights),sess.run(biases))
tensorflow中的全部定義和函數都須要經過session.run以後才能真正運行markdown
###
session tutorial
###
import tensorflow as tf
matrix1 = tf.constant([[3,3]])
matrix2 = tf.constant([[2],[2]])
product = tf.matmul(matrix1,matrix2) #matrix multiply np.dot(m1,m2)
#method 1
sess = tf.Session()
result = sess.run(product)
print (result)
sess.close()
#method 2 with method will close the session automatically
with tf.Session() as sess:
result2 = sess.run(product)
print (result2)
定義變量須要用tf.Variable
聲明,而且變量須要global_variables_initializer
最終完成定義,而最終變量生成須要藉助session,run過以後纔是真正的變量session
global_variables_initializer
何時須要用?dom
# variable tutotial
import tensorflow as tf
state = tf.Variable(0,name = 'counter')
#print (state.name)
one = tf.constant(1)
new_value = tf.add(state,one) ##add
update = tf.assign(state,new_value) ##assignment
init = tf.global_variables_initializer() ##must have if define variable
with tf.Session() as sess:
sess.run(init)
for _ in range(3):
sess.run(update)
print (sess.run(state))
在執行時候才賦值函數
#placehoder
import tensorflow as tf
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
output = tf.multiply(input1,input2)
with tf.Session() as sess:
print (sess.run(output,feed_dict={input1:[7.],input2:[2.]}))
#placehoder
import tensorflow as tf
import numpy as np
def add_layer (inputs,in_size,out_size,activation_function=None):#activation_function沒有激活函數就至關於線性函數
Weithts = tf.Variable(tf.random_normal([in_size,out_size]))
biases = tf.Variable(tf.zeros([1,out_size])+0.1)
Wx_plus_b = tf.matmul(inputs,Weithts)+biases
if activation_function is None :
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
def neural_network():
#生成數據
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise
# 定義兩層
xs = tf.placeholder(tf.float32, [None, 1]) # None用來限制用例個數
ys = tf.placeholder(tf.float32, [None, 1])
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
prediction = add_layer(l1, 10, 1, activation_function=None)
#定義遞歸降低
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
for i in range(1000):
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 50 == 0:
print(sess.run(loss, feed_dict={xs: x_data, ys: y_data}))
# x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
# init = tf.global_variables_initializer()
# sess = tf.Session()
# try:
# print(sess.run(tf.convert_to_tensor(x_data)))
#
# except Exception as e:
# print (e)
if __name__ == '__main__':
neural_network()