本文介紹在k8s集羣中使用node-exporter、prometheus、grafana對集羣進行監控。
其實現原理有點相似ELK、EFK組合。node-exporter組件負責收集節點上的metrics監控數據,並將數據推送給prometheus, prometheus負責存儲這些數據,grafana將這些數據經過網頁以圖形的形式展示給用戶。java
在開始以前有必要了解下Prometheus是什麼?
Prometheus (中文名:普羅米修斯)是由 SoundCloud 開發的開源監控報警系統和時序列數據庫(TSDB).自2012年起,許多公司及組織已經採用 Prometheus,而且該項目有着很是活躍的開發者和用戶社區.如今已經成爲一個獨立的開源項目。Prometheus 在2016加入 CNCF ( Cloud Native Computing Foundation ), 做爲在 kubernetes 以後的第二個由基金會主持的項目。 Prometheus 的實現參考了Google內部的監控實現,與源自Google的Kubernetes結合起來很是合適。另外相比influxdb的方案,性能更加突出,並且還內置了報警功能。它針對大規模的集羣環境設計了拉取式的數據採集方式,只須要在應用裏面實現一個metrics接口,而後把這個接口告訴Prometheus就能夠完成數據採集了,下圖爲prometheus的架構圖。node
Prometheus的特色:
一、多維數據模型(時序列數據由metric名和一組key/value組成)
二、在多維度上靈活的查詢語言(PromQl)
三、不依賴分佈式存儲,單主節點工做.
四、經過基於HTTP的pull方式採集時序數據
五、能夠經過中間網關進行時序列數據推送(pushing)
六、目標服務器能夠經過發現服務或者靜態配置實現
七、多種可視化和儀表盤支持python
prometheus 相關組件,Prometheus生態系統由多個組件組成,其中許可能是可選的:
一、Prometheus 主服務,用來抓取和存儲時序數據
二、client library 用來構造應用或 exporter 代碼 (go,java,python,ruby)
三、push 網關可用來支持短鏈接任務
四、可視化的dashboard (兩種選擇,promdash 和 grafana.目前主流選擇是 grafana.)
四、一些特殊需求的數據出口(用於HAProxy, StatsD, Graphite等服務)
五、實驗性的報警管理端(alartmanager,單獨進行報警彙總,分發,屏蔽等 )linux
promethues 的各個組件基本都是用 golang 編寫,對編譯和部署十分友好.而且沒有特殊依賴.基本都是獨立工做。
golang
如今咱們正式開始部署工做。這裏假設你已經爲你的K8S集羣部署過kube-dns或者coredns了。
1、環境介紹
操做系統環境:centos linux 7.5 64bit
K8S軟件版本: 1.12.3
Master節點IP: 10.40.0.151/24web
Node01節點IP: 10.40.0.152/24數據庫
Node02節點IP: 10.40.0.153/24json
2、採用daemonset方式部署node-exporter組件centos
cat node-exporter.yaml apiVersion: extensions/v1beta1 kind: DaemonSet metadata: name: node-exporter namespace: kube-system labels: k8s-app: node-exporter spec: template: metadata: labels: k8s-app: node-exporter spec: containers: - image: prom/node-exporter name: node-exporter ports: - containerPort: 9100 protocol: TCP name: http --- apiVersion: v1 kind: Service metadata: labels: k8s-app: node-exporter name: node-exporter namespace: kube-system spec: ports: - name: http port: 9100 nodePort: 31672 protocol: TCP type: NodePort selector: k8s-app: node-exporter
3、部署prometheus組件api
一、rbac文件
cat rbac-setup.yaml apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: prometheus rules: - apiGroups: [""] resources: - nodes - nodes/proxy - services - endpoints - pods verbs: ["get", "list", "watch"] - apiGroups: - extensions resources: - ingresses verbs: ["get", "list", "watch"] - nonResourceURLs: ["/metrics"] verbs: ["get"] --- apiVersion: v1 kind: ServiceAccount metadata: name: prometheus namespace: kube-system --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: prometheus roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: prometheus subjects: - kind: ServiceAccount name: prometheus namespace: kube-system
二、以configmap的形式管理prometheus組件的配置文件
cat configmap.yaml apiVersion: v1 kind: ConfigMap metadata: name: prometheus-config namespace: kube-system data: prometheus.yml: | global: scrape_interval: 15s evaluation_interval: 15s scrape_configs: - job_name: 'kubernetes-apiservers' kubernetes_sd_configs: - role: endpoints scheme: https tls_config: ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token relabel_configs: - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name] action: keep regex: default;kubernetes;https - job_name: 'kubernetes-nodes' kubernetes_sd_configs: - role: node scheme: https tls_config: ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token relabel_configs: - action: labelmap regex: __meta_kubernetes_node_label_(.+) - target_label: __address__ replacement: kubernetes.default.svc:443 - source_labels: [__meta_kubernetes_node_name] regex: (.+) target_label: __metrics_path__ replacement: /api/v1/nodes/${1}/proxy/metrics - job_name: 'kubernetes-cadvisor' kubernetes_sd_configs: - role: node scheme: https tls_config: ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token relabel_configs: - action: labelmap regex: __meta_kubernetes_node_label_(.+) - target_label: __address__ replacement: kubernetes.default.svc:443 - source_labels: [__meta_kubernetes_node_name] regex: (.+) target_label: __metrics_path__ replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor - job_name: 'kubernetes-service-endpoints' kubernetes_sd_configs: - role: endpoints relabel_configs: - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape] action: keep regex: true - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme] action: replace target_label: __scheme__ regex: (https?) - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path] action: replace target_label: __metrics_path__ regex: (.+) - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port] action: replace target_label: __address__ regex: ([^:]+)(?::\d+)?;(\d+) replacement: $1:$2 - action: labelmap regex: __meta_kubernetes_service_label_(.+) - source_labels: [__meta_kubernetes_namespace] action: replace target_label: kubernetes_namespace - source_labels: [__meta_kubernetes_service_name] action: replace target_label: kubernetes_name - job_name: 'kubernetes-services' kubernetes_sd_configs: - role: service metrics_path: /probe params: module: [http_2xx] relabel_configs: - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_probe] action: keep regex: true - source_labels: [__address__] target_label: __param_target - target_label: __address__ replacement: blackbox-exporter.example.com:9115 - source_labels: [__param_target] target_label: instance - action: labelmap regex: __meta_kubernetes_service_label_(.+) - source_labels: [__meta_kubernetes_namespace] target_label: kubernetes_namespace - source_labels: [__meta_kubernetes_service_name] target_label: kubernetes_name - job_name: 'kubernetes-ingresses' kubernetes_sd_configs: - role: ingress relabel_configs: - source_labels: [__meta_kubernetes_ingress_annotation_prometheus_io_probe] action: keep regex: true - source_labels: [__meta_kubernetes_ingress_scheme,__address__,__meta_kubernetes_ingress_path] regex: (.+);(.+);(.+) replacement: ${1}://${2}${3} target_label: __param_target - target_label: __address__ replacement: blackbox-exporter.example.com:9115 - source_labels: [__param_target] target_label: instance - action: labelmap regex: __meta_kubernetes_ingress_label_(.+) - source_labels: [__meta_kubernetes_namespace] target_label: kubernetes_namespace - source_labels: [__meta_kubernetes_ingress_name] target_label: kubernetes_name - job_name: 'kubernetes-pods' kubernetes_sd_configs: - role: pod relabel_configs: - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape] action: keep regex: true - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path] action: replace target_label: __metrics_path__ regex: (.+) - source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port] action: replace regex: ([^:]+)(?::\d+)?;(\d+) replacement: $1:$2 target_label: __address__ - action: labelmap regex: __meta_kubernetes_pod_label_(.+) - source_labels: [__meta_kubernetes_namespace] action: replace target_label: kubernetes_namespace - source_labels: [__meta_kubernetes_pod_name] action: replace target_label: kubernetes_pod_name
三、Prometheus deployment 文件
cat prometheus.yaml apiVersion: apps/v1beta2 kind: Deployment metadata: labels: name: prometheus-deployment name: prometheus namespace: kube-system spec: replicas: 1 selector: matchLabels: app: prometheus template: metadata: labels: app: prometheus spec: containers: - image: prom/prometheus:v2.0.0 name: prometheus command: - "/bin/prometheus" args: - "--config.file=/etc/prometheus/prometheus.yml" - "--storage.tsdb.path=/prometheus" - "--storage.tsdb.retention=24h" ports: - containerPort: 9090 protocol: TCP volumeMounts: - mountPath: "/prometheus" name: data - mountPath: "/etc/prometheus" name: config-volume resources: requests: cpu: 100m memory: 100Mi limits: cpu: 500m memory: 2500Mi serviceAccountName: prometheus volumes: - name: data emptyDir: {} - name: config-volume configMap: name: prometheus-config --- kind: Service apiVersion: v1 metadata: labels: app: prometheus name: prometheus namespace: kube-system spec: type: NodePort ports: - port: 9090 targetPort: 9090 nodePort: 30003 selector: app: prometheus
四、經過上述yaml文件建立相應的對象
kubectl create -f node-exporter.yaml kubectl create -f rbac-setup.yaml kubectl create -f configmap.yaml kubectl create -f promethues.yaml
五、查看相關pod和service
# kubectl get pods -n kube-system NAME READY STATUS RESTARTS AGE coredns-779dfc4d59-rtpmk 1/1 Running 0 48s kubernetes-dashboard-b54f75c69-tnn4h 1/1 Running 0 90m node-exporter-sflqg 1/1 Running 0 9m44s node-exporter-xfsf8 1/1 Running 0 9m44s prometheus-58dc44f44c-z86rv 1/1 Running 0 8m44s
# kubectl get svc -n kube-system NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE kube-dns ClusterIP 10.250.0.2 <none> 53/UDP,53/TCP 117s kubernetes-dashboard NodePort 10.250.1.89 <none> 443:38443/TCP 102m node-exporter NodePort 10.250.0.165 <none> 9100:31672/TCP 10m prometheus NodePort 10.250.0.53 <none> 9090:30003/TCP 9m53s
六、Node-exporter對應的nodeport端口爲31672,經過訪問http://10.40.0.152:31672/metrics 能夠看到對應的metrics
七、prometheus對應的nodeport端口爲30003,經過訪問http://10.40.0.152:30003/targets 能夠看到prometheus已經成功鏈接上了k8s的apiserver
八、在prometheus的WEB界面上提供了基本的查詢K8S集羣中每一個POD的CPU使用狀況,可使用以下查詢條件查詢:
sum by (pod_name)( rate(container_cpu_usage_seconds_total{image!="", pod_name!=""}[1m] ) )
上述的查詢有出現數據,說明node-exporter往prometheus中寫入數據正常,接下來咱們就能夠部署grafana組件,實現更友好的webui展現數據了。
5、部署grafana組件
一、grafana deployment配置文件
cat grafana.yaml
apiVersion: extensions/v1beta1 kind: Deployment metadata: name: grafana-core namespace: kube-system labels: app: grafana component: core spec: replicas: 1 template: metadata: labels: app: grafana component: core spec: containers: - image: grafana/grafana:5.0.0 name: grafana-core imagePullPolicy: IfNotPresent resources: limits: cpu: 100m memory: 100Mi requests: cpu: 100m memory: 100Mi env: - name: GF_AUTH_BASIC_ENABLED value: "true" - name: GF_AUTH_ANONYMOUS_ENABLED value: "false" readinessProbe: httpGet: path: /login port: 3000 volumeMounts: - name: grafana-persistent-storage mountPath: /var volumes: - name: grafana-persistent-storage emptyDir: {} --- apiVersion: v1 kind: Service metadata: name: grafana namespace: kube-system labels: app: grafana component: core spec: type: NodePort ports: - port: 3000 nodePort: 31000 selector: app: grafana
部署grafana
kubectl create -f grafana.yaml
查看grafana pod和service
# kubectl get pod -n kube-system NAME READY STATUS RESTARTS AGE coredns-779dfc4d59-rtpmk 1/1 Running 0 101m grafana-core-6759c8945-5f4sv 1/1 Running 0 91m kubernetes-dashboard-b54f75c69-tnn4h 1/1 Running 0 3h11m node-exporter-sflqg 1/1 Running 0 110m node-exporter-xfsf8 1/1 Running 0 110m prometheus-58dc44f44c-z86rv 1/1 Running 0 109m
# kubectl get svc -n kube-system NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE grafana NodePort 10.250.1.230 <none> 3000:31000/TCP 93m kube-dns ClusterIP 10.250.0.2 <none> 53/UDP,53/TCP 103m kubernetes-dashboard NodePort 10.250.1.89 <none> 443:38443/TCP 3h23m node-exporter NodePort 10.250.0.165 <none> 9100:31672/TCP 112m prometheus NodePort 10.250.0.53 <none> 9090:30003/TCP 111m
能夠看到grafana nodeport端口爲31000,可以使用nodeip+nodeport的方式訪問grafana http://10.40.0.152:31000
默認用戶名和密碼都是admin
配置數據庫源爲prometheus,導入面板
能夠直接輸入模板編號315在線導入,或者下載好對應的json模板文件本地導入,面板模板下載地址https://grafana.com/dashboards/315
在線加載模板OK,選擇prometheus數據庫實例
大功告成,能夠看到炫酷的監控頁面了。