哇塞,很久麼有跟進mxnet啦,python改版了好多好多啊,忽然發現C++用起來纔是最爽的. 貼一個mxnet中的C++Example中的mlp網絡和實現,感受和python對接毫無違和感。真是一級棒吶.python
// // Created by xijun1 on 2017/12/8. // #include <iostream> #include <vector> #include <string> #include <mxnet/mxnet-cpp/MxNetCpp.h> #include <mxnet/mxnet-cpp/op.h> namespace mlp{ template < typename T , typename U > class MLP{ public: static mx_float OutputAccuracy(mx_float* pred, mx_float* target) { int right = 0; for (int i = 0; i < 128; ++i) { float mx_p = pred[i * 10 + 0]; float p_y = 0; for (int j = 0; j < 10; ++j) { if (pred[i * 10 + j] > mx_p) { mx_p = pred[i * 10 + j]; p_y = j; } } if (p_y == target[i]) right++; } return right / 128.0; } static bool train(T x , U y); static bool predict(T x); static bool net() { using mxnet::cpp::Symbol; using mxnet::cpp::NDArray; Symbol x = Symbol::Variable("X"); Symbol y = Symbol::Variable("label"); std::vector<std::int32_t> shapes({512 , 10}); //定義一個兩層的網絡. wx + b Symbol weight_0 = Symbol::Variable("weight_0"); Symbol biases_0 = Symbol::Variable("biases_0"); Symbol fc_0 = mxnet::cpp::FullyConnected("fc_0",x,weight_0,biases_0 ,512); Symbol output_0 = mxnet::cpp::LeakyReLU("relu_0",fc_0,mxnet::cpp::LeakyReLUActType::kLeaky); Symbol weight_1 = Symbol::Variable("weight_1"); Symbol biases_1 = Symbol::Variable("biases_1"); Symbol fc_1 = mxnet::cpp::FullyConnected("fc_1",output_0,weight_1,biases_1,10); Symbol output_1 = mxnet::cpp::LeakyReLU("relu_1",fc_1,mxnet::cpp::LeakyReLUActType::kLeaky); Symbol pred = mxnet::cpp::SoftmaxOutput("softmax",output_1,y); //目標函數,loss函數 //定義使用計算驅動 mxnet::cpp::Context ctx = mxnet::cpp::Context::cpu( 0); NDArray arr_x(mxnet::cpp::Shape( 128 , 28 ) , ctx , false); NDArray arr_y(mxnet::cpp::Shape(128) , ctx , false ); //定義輸入數據 std::shared_ptr< mx_float > aptr_x(new mx_float[128*28] , [](mx_float* aptr_x){ delete [] aptr_x ;}); std::shared_ptr< mx_float > aptr_y(new mx_float[128] , [](mx_float * aptr_y){ delete [] aptr_y ;}); //初始化數據 for(int i=0 ; i<128 ; i++){ for(int j=0;j<28 ; j++){ //定義x aptr_x.get()[i*28+j]= i % 10 +0.1f; } //定義y aptr_y.get()[i]= i % 10; } //將數據轉換到NDArray中 arr_x.SyncCopyFromCPU(aptr_x.get(),128*28); arr_x.WaitToRead(); arr_y.SyncCopyFromCPU(aptr_y.get(),128); arr_y.WaitToRead(); //定義各個層參數的數組 NDArray arr_w_0(mxnet::cpp::Shape(512,28),ctx, false); NDArray arr_b_0(mxnet::cpp::Shape( 512 ),ctx,false); NDArray arr_w_1(mxnet::cpp::Shape(10 , 512 ) , ctx , false); NDArray arr_b_1(mxnet::cpp::Shape( 10 ) , ctx , false); //初始化權重參數 arr_w_0 = 0.01f; arr_b_1 = 0.01f; arr_w_1 = 0.01f; arr_b_1 = 0.01f; //求解梯度 NDArray arr_w_0_g(mxnet::cpp::Shape( 512 , 28 ),ctx, false); NDArray arr_b_0_g(mxnet::cpp::Shape( 512 ) , ctx , false); NDArray arr_w_1_g(mxnet::cpp::Shape( 10 , 512 ) , ctx , false); NDArray arr_b_1_g(mxnet::cpp::Shape( 10 ) , ctx , false); //將數據綁定到網絡圖中. //輸入數據參數 std::vector< NDArray > bind_data; bind_data.push_back( arr_x ); bind_data.push_back( arr_w_0 ); bind_data.push_back( arr_b_0 ); bind_data.push_back( arr_w_1 ); bind_data.push_back( arr_b_1 ); bind_data.push_back( arr_y ); //全部的梯度參數 std::vector< NDArray > arg_grad_store; arg_grad_store.push_back( NDArray() ); //不須要輸入的梯度 arg_grad_store.push_back( arr_w_0_g ); arg_grad_store.push_back( arr_b_0_g ); arg_grad_store.push_back( arr_w_1_g ); arg_grad_store.push_back( arr_b_1_g ); arg_grad_store.push_back( NDArray() ); //不須要輸出 loss 的梯度 //如何操做梯度. std::vector< mxnet::cpp::OpReqType > grad_req_type; grad_req_type.push_back(mxnet::cpp::kNullOp); grad_req_type.push_back(mxnet::cpp::kWriteTo); grad_req_type.push_back(mxnet::cpp::kWriteTo); grad_req_type.push_back(mxnet::cpp::kWriteTo); grad_req_type.push_back(mxnet::cpp::kWriteTo); grad_req_type.push_back(mxnet::cpp::kNullOp); //定義一個狀態數組 std::vector< NDArray > aux_states; std::cout<<" make the Executor"<<std::endl; std::shared_ptr<mxnet::cpp::Executor > executor = std::make_shared<mxnet::cpp::Executor>( pred, ctx, bind_data, arg_grad_store, grad_req_type, aux_states ); //訓練 std::cout<<" Training "<<std::endl; int max_iters = 20000; //最大迭代次數 mx_float learning_rate = 0.0001; //學習率 for (int iter = 0; iter < max_iters ; ++iter) { executor->Forward(true); if(iter % 100 == 0){ std::vector<NDArray> & out = executor->outputs; std::shared_ptr<mx_float> tp_x( new mx_float[128*28] , [](mx_float * tp_x){ delete [] tp_x ;}); out[0].SyncCopyToCPU(tp_x.get(),128*10); NDArray::WaitAll(); std::cout<<"epoch "<<iter<<" "<<"Accuracy: "<< OutputAccuracy(tp_x.get() , aptr_y.get())<<std::endl; } //依據梯度更新參數 executor->Backward(); for (int i = 1; i <5 ; ++i) { bind_data[i] -= arg_grad_store[i]*learning_rate; } NDArray::WaitAll(); } } static bool SetDriver(); }; template <typename T , typename U > bool MLP<T,U>::SetDriver() { return true; } template <typename T , typename U > bool MLP<T,U>::train(T x, U y) { return true; } template <typename T , typename U > bool MLP<T,U>::predict(T x) { return true; } } int main(int argc , char * argv[]){ mlp::MLP<mx_float ,mx_uint>::net(); MXNotifyShutdown(); return 0; }
結果:ios
poch 18900 Accuracy: 0.703125
epoch 19000 Accuracy: 0.703125
epoch 19100 Accuracy: 0.703125
epoch 19200 Accuracy: 0.703125
epoch 19300 Accuracy: 0.703125
epoch 19400 Accuracy: 0.703125
epoch 19500 Accuracy: 0.703125
epoch 19600 Accuracy: 0.703125
epoch 19700 Accuracy: 0.703125
epoch 19800 Accuracy: 0.703125
epoch 19900 Accuracy: 0.703125數組