【.Net Micro Framework PortingKit – 09】串口驅動

雖然在PC機中,串口漸行漸遠,但是在嵌入式領域,串口仍可以說是如日中天,因爲它造價低廉、並且編程也比較方便,在沒有顯示屏或輸入設備的系統上,串口更是不可或缺,和超級終端一道,共同解決了信息顯示和輸入問題。

經過這幾天的努力,在Cortex-M3平臺上的.Net Micro FrameworkNativeSample移植工作就要一個段落了,目前已實現啓動代碼、SRAM、時鐘(RCC)、中斷(NVIC)、SysTickGPIO、串口、NandFlash(FMSC)等相關功能,這些代碼可以說是使TinyClr正常工作的最小集合,有了這些工作做鋪墊,下一步就可以移植TinyClr了,如果我們採用的Cortex-M3開發板有2M以上的RAM,那麼我們的工作到這一步也許是已經完成90%上了,但是由於資源有限,下一步調試必須爲Flash版本,所以未知的工作將很多,並且調試也將變得困難,不管怎麼我們的.Net Micro Framework PortingKit之旅還將繼續,不過,說心裏話,由零開始完成這些工作,雖然艱苦,但是收穫頗豐,對ARM開發(尤其是Cortex-M3)的理解更是上了一個層次。

好了,下面我們要說一下串口驅動的開發。

GPIO開發一樣,我們仍需在CortexM3.h中編寫串口相關的寄存器代碼。

struct CortexM3_Usart

{

static const UINT32 c_MAX_BAUDRATE = 45000000;

static const UINT32 c_MIN_BAUDRATE = 1200;

static const UINT32 c_Base1 = 0x40013800;

static const UINT32 c_Base2 = 0x40004400;

static const UINT32 c_Base3 = 0x40004800;

/****/ volatile UINT16 SR;

static const UINT16 SR_TXE=((UINT16)0x0080);

static const UINT16 SR_TC=((UINT16)0x0040);

static const UINT16 SR_RXNE=((UINT16)0x0020);

UINT16 RESERVED0;

/****/ volatile UINT16 DR;

UINT16 RESERVED1;

/****/ volatile UINT16 BRR;

UINT16 RESERVED2;

/****/ volatile UINT16 CR1;

static const UINT16 CR1_UE_Set = ((UINT16)0x2000); //USART Enable Mask

static const UINT16 CR1_UE_Reset = ((UINT16)0xDFFF); //USART Disable Mask

static const UINT16 CR1_Parity_No = ((UINT16)0x0000);

static const UINT16 CR1_Parity_Even = ((UINT16)0x0400);

static const UINT16 CR1_Parity_Odd = ((UINT16)0x0600);

static const UINT16 CR1_DataBit_8 = ((UINT16)0x0000);

static const UINT16 CR1_DataBit_9 = ((UINT16)0x1000);

static const UINT16 CR1_Mode_Rx = ((UINT16)0x0004);

static const UINT16 CR1_Mode_Tx = ((UINT16)0x0008);

static const UINT16 CR1_CLEAR_Mask = ((UINT16)0xE9F3);

static const UINT16 CR1_PEIE = ((UINT16)0x0100);

static const UINT16 CR1_TXEIE = ((UINT16)0x0080);

static const UINT16 CR1_TCIE = ((UINT16)0x0040);

static const UINT16 CR1_RXNEIE = ((UINT16)0x0020);

UINT16 RESERVED3;

/****/ volatile UINT16 CR2;

static const UINT16 CR2_StopBits_1 = ((UINT16)0x0000);

static const UINT16 CR2_StopBits_0_5 = ((UINT16)0x1000);

static const UINT16 CR2_StopBits_2 = ((UINT16)0x2000);

static const UINT16 CR2_StopBits_1_5 = ((UINT16)0x3000);

static const UINT16 CR2_StopBits_Mask= ((UINT16)0xCFFF); /* USART CR2 STOP Bits Mask */

UINT16 RESERVED4;

/****/ volatile UINT16 CR3;

static const UINT16 CR3_HardwareFlowControl_None = ((UINT16)0x0000);

static const UINT16 CR3_HardwareFlowControl_RTS = ((UINT16)0x0100);

static const UINT16 CR3_HardwareFlowControl_CTS = ((UINT16)0x0200);

static const UINT16 CR3_HardwareFlowControl_RTS_CTS = ((UINT16)0x0300);

static const UINT16 CR3_HardwareFlowControl_Mask = ((UINT16)0xFCFF);

UINT16 RESERVED5;

/****/ volatile UINT16 GTPR;

UINT16 RESERVED6;

};

有了上述代碼,我們便可以方便的操作串口寄存器了。

串口的初始化要做如下初始化工作(STM3210E開發板有三個串口,我們以串口1爲例來講述):

1、 開啓串口時鐘

UsartId = CortexM3_NVIC::c_IRQ_Index_USART1;

RCC.APB2ENR |= CortexM3_RCC::APB2_GPIOA | CortexM3_RCC::APB2_USART1;

2、 **中斷

if(!CPU_INTC_ActivateInterruptEx( UsartId, (UINT32)(void *)USART1_IRQHandler)) return FALSE;

3、 設置串口參數,如波特率、奇偶校驗、數據位、停止位等

4、 GPIO重定義

CPU_GPIO_DisablePin(GPIO_Driver::PA9,RESISTOR_DISABLED,FALSE,GPIO_ALT_MODE_1);

CPU_GPIO_DisablePin(GPIO_Driver::PA10,RESISTOR_DISABLED,TRUE,GPIO_ALT_MODE_2);

5、 串口使能

Usart.CR1 |= CortexM3_Usart::CR1_UE_Set;

在中斷函數中完成數據的發送和接收:

void CortexM3_USART_Driver::ISR( void* param )

{

UINT32 comPort = (UINT32)param;

CortexM3_Usart &Usart=CortexM3::Usart(comPort);

char c;

UINT32 Status;

Status = Usart.SR;

if(Status & CortexM3_Usart::SR_RXNE)

{

c = Usart.DR;

USART_AddCharToRxBuffer( comPort, c );

Events_Set( SYSTEM_EVENT_FLAG_COM_IN );

}

if(Status & CortexM3_Usart::SR_TC)

{

if(0 == (c_RefFlagTx & g_CortexM3_USART_Driver.m_RefFlags[comPort]))

{

return;

}

if(USART_RemoveCharFromTxBuffer( comPort, c ))

{

WriteCharToTxBuffer( comPort, c );

}

else

{

// disable further Tx interrupts since we are level triggered

TxBufferEmptyInterruptEnable( comPort, FALSE );

}

Events_Set( SYSTEM_EVENT_FLAG_COM_OUT );

}

}

核心代碼也就是上述介紹的相關內容,下面我們在NativeSample中寫一個串口測試代碼:

void ApplicationEntryPoint()

{

while(TRUE)

{

if(Events_WaitForEvents(SYSTEM_EVENT_FLAG_COM_IN,100))

{

Events_Clear(SYSTEM_EVENT_FLAG_COM_IN);

char bytData[512];

int Size=USART_BytesInBuffer(0,TRUE);

USART_Read(0,bytData,Size);

for(int i=0;i<Size;i++)

debug_printf("%c",bytData[i]);

}

debug_printf("Hello Micro Framework!!!/r/n");

}

}

代碼編譯運行後的結果如下: