AbstractQueuedSynchronizer源代碼分析(未完成)

Node

exclusive lock(獨佔鎖)

ReentrantLock

ReentrantLock實現了公平鎖與非公平鎖,公平鎖提供順序獲取鎖的方式,而非公平鎖提供搶佔式獲取鎖的方式。
公平鎖: 線程A佔用鎖,B等待,而後依次獲取鎖,其中B會被掛起或者是自旋,而後當線程A釋放鎖後,線程B再被喚醒,以此類推,按照申請鎖的前後順序來。
非公平鎖: 線程A佔用鎖,B等待,於此同時C請求鎖,因爲B線程被喚醒須要時間,因此C有可能在B被喚醒錢就釋放鎖,以此類推,按照鎖空閒時申請鎖的線程爲優先。java

世界應該是公平公正的不是嗎?好了,別白日作夢了,因爲線程的喚醒是一個比較耗時的操做(切換線程上下文,調用OS等)若是線程持有鎖的時間很長,那麼公平鎖就比較有優點node

NonfairSync

NonfairSync中lock的實現以下:ui

final void lock() {
    // CAS操做設置AbstractQueuedSynchronizer中的volatile int state
    // 若是設置成功將現有的線程setExclusiveOwnerThread
    if (compareAndSetState(0, 1))
        setExclusiveOwnerThread(Thread.currentThread());
    else
    // CAS失敗了就調用acquire()方法
        acquire(1);
}

acquire方法由AbstractQueuedSynchronizer提供this

public final void acquire(int arg) {
    if (!tryAcquire(arg) &&
        acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
    selfInterrupt();
}

tryAcquire在AbstractQueuedSynchronizer中是一個protected方法而且沒有給出實現,可見是但願由它的子類去擴展線程

protected boolean tryAcquire(int arg) {
    throw new UnsupportedOperationException();
}

回去再看NonfairSync中tryAcquire的實現code

protected final boolean tryAcquire(int acquires) {
    return nonfairTryAcquire(acquires);
}

final boolean nonfairTryAcquire(int acquires) {
    final Thread current = Thread.currentThread();
    // 獲取同步state
    int c = getState();
    // 這個判斷頗有意思,因爲調用這個方式是第一次嘗試CAS失敗纔會進入該方法
    // 這裏從新再判斷一次同步state,能夠避免以前的線程已經釋放lock,而繼續將
    // 該線程放入等待隊列的狀況,和lock()的第一段代碼含義相同設置同步state
    if (c == 0) {
        if (compareAndSetState(0, acquires)) {
            setExclusiveOwnerThread(current);
            return true;
        }
    }
    // 接下來判斷是不是同一個線程,這個判斷是由於ReentrantLock是可重入的lock
    else if (current == getExclusiveOwnerThread()) {
        // 將state++,這裏的lock的獲取就是經過同步state的值來控制的
        int nextc = c + acquires;
        if (nextc < 0) // overflow
            throw new Error("Maximum lock count exceeded");
        setState(nextc);
        return true;
    }
    return false;
}

這段代碼大概的意思就是若是尚未線程佔用鎖就設置state爲1,若是是已經佔用該鎖的線程再次訪問就累計state的值,返回true,若是已經被佔用返回false隊列

回過頭來繼續看acquire,!tryAcquire(arg)意味着獲取鎖失敗,而後執行acquireQueued(addWaiter(Node.EXCLUSIVE), arg)
進入addWaiter方法ip

/**
 * 1. 初始化: 若是tail和head沒有被初始化,那麼建立一個node而且指向它
 * +------+
 * | Node | <---- tail, head
 * |(Head)|
 * +------+
 * 
 * 2. 添加新的節點進入隊列
 *            +------+  prev +------+
 * head ----> | Node | <---- | Node | <---- tail
 *            |(Head)| ----> |Thread|
 *            +------+  next +------+
 */
private Node addWaiter(Node mode) {
    // 建立一個node使用EXCLUSIVE模式
    Node node = new Node(Thread.currentThread(), mode);
    // Try the fast path of enq; backup to full enq on failure
    Node pred = tail;
    // 若是隊列不是null(已經有線程再等待鎖)那麼將該新增的node加入隊列
    if (pred != null) {
        node.prev = pred;
        if (compareAndSetTail(pred, node)) {
            pred.next = node;
            return node;
        }
    }
    // 若是上述代碼沒有成功,這裏是使用自旋的方式繼續加入等待隊列
    enq(node);
    // 入隊成功後返回新增node節點
    return node;
}

// 將新的node節點入隊並返回以前的tail節點
private Node enq(final Node node) {
    for (;;) {
        Node t = tail;
        if (t == null) { // Must initialize
            if (compareAndSetHead(new Node()))
                tail = head;
        } else {
            // 典型的入隊操做將tail指向新增的node
            node.prev = t;
            if (compareAndSetTail(t, node)) {
                t.next = node;
                return t;
            }
        }
    }
}

而後再看acquireQueued,此時的node參數是以前咱們分析的新增入隊列的node節點get

final boolean acquireQueued(final Node node, int arg) {
    boolean failed = true;
    try {
        boolean interrupted = false;
        for (;;) {
            // 返回node的前一個節點
            final Node p = node.predecessor();
            /**
             * 若是該新增node的prev-node是head-node.以下圖這種狀態
             * 也就是說在等待隊列中只有一個node,Head-node不包含在
             * 內,而且調用tryAcquire方法成功(即成功的設置了同步state)
             * 
             * 
             *            +------+  prev +------+
             * head ----> | Node | <---- | Node | <---- tail
             *            |(Head)| ----> |Thread|
             *            +------+  next +------+
             *
             * 那麼將head指向改node,原來的head的next節點爲null
             * 
             *             +-------------+
             * head ---->  | Node        | <---- tail
             *             |Thread = null|
             *             +-------------+
             *
             */
            if (p == head && tryAcquire(arg)) {
                setHead(node);
                p.next = null; // help GC
                failed = false;
                return interrupted;
            }
            // 
            if (shouldParkAfterFailedAcquire(p, node) &&
                parkAndCheckInterrupt())
                interrupted = true;
        }
     } finally {
         if (failed)
            cancelAcquire(node);
     }
}

接下來是shouldParkAfterFailedAcquire,顧名思義該方法返回是否在獲取lock失敗後堵塞線程,該方法會忽略並移出隊列中node.waitStatus = CANCELLED的node同步

/** 
 * 該方的參數是 pred是Thread-A所在的node,node是Thread-B所在的node
 * 這個必須得理解
 * 
 *            +------+  prev +--------------+  prev +--------+
 * head ----> | Node | <---- | Node         | <---- | Node   |<---- tail
 *            |(Head)| ----> |Thread-A      | ----> |Thread-B|
 *            +------+  next |waitStatus = 0|       |        |
 *                           +--------------+       +--------+
 * 
 *            +------+  prev +---------------+  prev +--------+
 * head ----> | Node | <---- | Node          | <---- | Node   |<---- tail
 *            |(Head)| ----> |Thread-A       | ----> |Thread-B|
 *            +------+  next |waitStatus = -1|       |        |
 *                           +---------------+       +--------+
 *
 * static final int CANCELLED =  1;
 * static final int SIGNAL    = -1;
 * static final int CONDITION = -2;
 * static final int PROPAGATE = -3;
 *
 * 同時這個方法又分爲2步(彷佛整個AQS中都充斥着延遲初始化的概念)
 * 1. 初始化: 設置形參pred的waitStatus屬性爲Node.SIGNAL
 * 2. 因爲調用shouldParkAfterFailedAcquire()方法的acquireQueued()方法
 * 還在自旋中,因此該方法會被調用第2次,此次才真正返回true,若是waitStatus
 * 被設置成CANCELLED,那麼會忽略等待隊列中的這些node
 * 
 */
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
    int ws = pred.waitStatus;
    if (ws == Node.SIGNAL)
        /*
         * This node has already set status asking a release
         * to signal it, so it can safely park.
         */
        return true;
    if (ws > 0) {
        /*
         * Predecessor was cancelled. Skip over predecessors and
         * indicate retry.
         */
        do {
            node.prev = pred = pred.prev;
        } while (pred.waitStatus > 0);
        pred.next = node;
    } else {
        /*
         * waitStatus must be 0 or PROPAGATE.  Indicate that we
         * need a signal, but don't park yet.  Caller will need to
         * retry to make sure it cannot acquire before parking.
         */
        // 這裏就是初始化的代碼,設置形參pred的waitStatus屬性爲Node.SIGNAL
        compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
    }
    return false;
}

parkAndCheckInterrupt()方法,使用LockSupport堵塞當前node對應的thread,並返回中斷標識,當這個方法被調用時才真正的意味着lock.lock()方法完成了它的使命

private final boolean parkAndCheckInterrupt() {
    LockSupport.park(this);
    return Thread.interrupted();
}

補充說明

unsafe類

相關文章
相關標籤/搜索