上一篇說了Volley的請求流程,可是沒有說請求到response後怎麼處理,這篇文章就來詳細的說一說。讓咱們回憶一下,不論是在CacheDispatcher仍是NetworkDispatcher中只要得到response,就經過這種方式傳遞出去java
mDelivery.postResponse(request, response);複製代碼
讓咱們探進去看看都發生了什麼?算法
@Override
public void postResponse(Request<?> request, Response<?> response) {
postResponse(request, response, null);
}
@Override
public void postResponse(Request<?> request, Response<?> response, Runnable runnable) {
request.markDelivered();
request.addMarker("post-response");
mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, runnable));
}複製代碼
前一個函數是直接調用第二個函數,方法中前兩句都是作標記,重點看最後一行代碼,首先mResponsePoster是個啥東西呀,緩存
mResponsePoster = new Executor() {
@Override
public void execute(Runnable command) {
handler.post(command);
}
};複製代碼
Executor僅僅是一個接口,它只有一個execute方法,你們也看見了,須要一個參數Runnable。也就是說他其實就是一個包裝,而後放進handler執行,那麼這個handler是哪一個handler?bash
public RequestQueue(Cache cache, Network network, int threadPoolSize) {
this(cache, network, threadPoolSize,
new ExecutorDelivery(new Handler(Looper.getMainLooper())));
}複製代碼
他實際上是在RequestQueue的構造函數裏面進行初始化的。想一想也是,得到數據之後通常都要進行UI操做,因此必須得放在主線程中操做。好了,相比你們的好奇心都沒了吧,讓咱們來看主線。剛纔說到他須要一個Runnable,裏面傳的是ResponseDeliveryRunnable,讓咱們跟進去在看,網絡
public ResponseDeliveryRunnable(Request request, Response response, Runnable runnable) {
mRequest = request;
mResponse = response;
mRunnable = runnable;
}
public void run() {
// If this request has canceled, finish it and don't deliver. if (mRequest.isCanceled()) { mRequest.finish("canceled-at-delivery"); return; } // Deliver a normal response or error, depending. if (mResponse.isSuccess()) { mRequest.deliverResponse(mResponse.result); } else { mRequest.deliverError(mResponse.error); } // If this is an intermediate response, add a marker, otherwise we're done
// and the request can be finished.
if (mResponse.intermediate) {
mRequest.addMarker("intermediate-response");
} else {
mRequest.finish("done");
}
// If we have been provided a post-delivery runnable, run it.
if (mRunnable != null) {
mRunnable.run();
}
}
}複製代碼
直接看run方法,前面都是對request進行判斷,若是取消的話就直接結束,而後無論成功或者失敗,都經過request來發送這個response,探進去看看request這個方法:框架
@Override
protected void deliverResponse(String response) {
if (mListener != null) {
mListener.onResponse(response);
}
}複製代碼
public StringRequest(int method, String url, Listener<String> listener,
ErrorListener errorListener) {
super(method, url, errorListener);
mListener = listener;
}複製代碼
兩個結合能夠看出直接把response傳遞給Listener listener,它就是Respnose中定義的接口,是否是有點熟悉,其實就是咱們初始化request定義的兩個監聽器中的其中一個,另外一個同理,就不貼出來了。原來最後將response的成功或者失敗都交給咱們處理,聯繫上邊的知道咱們的處理方法都被放在了主線程的handler,因此能夠放心進行UI操做。這下流程大致都清楚了吧。細心的同窗會發現ResponseDeliveryRunnable中還能夠傳遞一個runnable,這個是怎麼用呢,用在哪呢,其實這兒Volley只有一個地方用到了,就是在CacheDispatcher中,假若有些response的soft-TTL(response存活時間)到了,就會發送一個runnable,讓他從新進行網絡請求獲取response,假如返回的是304(就是不須要更新),就僅僅更新一下他的存活時間,什麼也不作。假如返回的是一個新的response,就會在NetworkDispatcher中從新發送給request進行再一次操做。把代碼貼出來讓大家再回顧一下。ide
if (!entry.refreshNeeded()) {
// Completely unexpired cache hit. Just deliver the response.
mDelivery.postResponse(request, response);
} else {
// Soft-expired cache hit. We can deliver the cached response,
// but we need to also send the request to the network for
// refreshing.
request.addMarker("cache-hit-refresh-needed");
request.setCacheEntry(entry);
.............
final Request<?> finalRequest = request;
mDelivery.postResponse(request, response,
new Runnable() {
@Override
public void run() {
try {
mNetworkQueue.put(finalRequest);
} catch (InterruptedException e) {
// Not much we can do about this.
}
}
});
}複製代碼
中間有一些省略,看重點就能夠了。
上篇文章說這一篇講一下緩存的精彩之處,可是想一想仍是要把Volley的流程所有要搞明白,因此就。。。下面說說緩存是怎麼精彩的,先說一部分,也是最精彩的部分,至少是我認爲的。
你們一說到緩存,就能想到二級緩存,三級緩存(其實也就是二級),lru算法等。那麼Volley中有沒有呢?網上有人說沒有lru,這兒我是不贊同的。來看看我爲何不贊同,同時但願大家有本身的判斷。
直接看緩存的類,他有一個接口Cache,讓咱們看他的子類,函數
public class DiskBasedCache implements Cache {
/** Map of the Key, CacheHeader pairs */
private final Map<String, CacheHeader> mEntries =
new LinkedHashMap<String, CacheHeader>(16, .75f, true);
/** Total amount of space currently used by the cache in bytes. */
private long mTotalSize = 0;
/** The root directory to use for the cache. */
private final File mRootDirectory;
/** Default maximum disk usage in bytes. */
private static final int DEFAULT_DISK_USAGE_BYTES = 5 * 1024 * 1024;
/** High water mark percentage for the cache */
private static final float HYSTERESIS_FACTOR = 0.9f;
public DiskBasedCache(File rootDirectory, int maxCacheSizeInBytes) {
mRootDirectory = rootDirectory;
mMaxCacheSizeInBytes = maxCacheSizeInBytes;
}
/**
* Constructs an instance of the DiskBasedCache at the specified directory using
* the default maximum cache size of 5MB.
* @param rootDirectory The root directory of the cache.
*/
public DiskBasedCache(File rootDirectory) {
this(rootDirectory, DEFAULT_DISK_USAGE_BYTES);
}
/**
* Returns the cache entry with the specified key if it exists, null otherwise.
*/
@Override
public synchronized Entry get(String key) {
CacheHeader entry = mEntries.get(key);
// if the entry does not exist, return.
if (entry == null) {
return null;
}
File file = getFileForKey(key);
CountingInputStream cis = null;
try {
cis = new CountingInputStream(new BufferedInputStream(new FileInputStream(file)));
CacheHeader.readHeader(cis); // eat header
byte[] data = streamToBytes(cis, (int) (file.length() - cis.bytesRead));
return entry.toCacheEntry(data);
} catch (IOException e) {
VolleyLog.d("%s: %s", file.getAbsolutePath(), e.toString());
remove(key);
return null;
} catch (NegativeArraySizeException e) {
VolleyLog.d("%s: %s", file.getAbsolutePath(), e.toString());
remove(key);
return null;
} finally {
if (cis != null) {
try {
cis.close();
} catch (IOException ioe) {
return null;
}
}
}
}
/**
* Puts the entry with the specified key into the cache.
*/
@Override
public synchronized void put(String key, Entry entry) {
pruneIfNeeded(entry.data.length);
File file = getFileForKey(key);
try {
BufferedOutputStream fos = new BufferedOutputStream(new FileOutputStream(file));
CacheHeader e = new CacheHeader(key, entry);
boolean success = e.writeHeader(fos);
if (!success) {
fos.close();
VolleyLog.d("Failed to write header for %s", file.getAbsolutePath());
throw new IOException();
}
fos.write(entry.data);
fos.close();
putEntry(key, e);
return;
} catch (IOException e) {
}
boolean deleted = file.delete();
if (!deleted) {
VolleyLog.d("Could not clean up file %s", file.getAbsolutePath());
}
}複製代碼
這兒我只放了一些重點的代碼,看緩存固然是要看他的get和put方法。我先說一個java的集合--LinkedHashMap,它保證了插入的順序和讀取的順序是一致的,還內置了LRU算法,這是關鍵。好了,來看代碼:他首先有一個LinkedHashMap的成員變量mEntries,以request的url爲key,CacheHeader爲value存放在該變量中。而CacheHeader是一個輕量級的類,裏面的成員變量和方法並很少。看名字就知道,該類僅僅是存放response的head,裏面只是response的一些說明信息,並無真正的數據。還有一個mRootDirectory,這裏面纔是存放真正的數據,默認大小爲5M。oop
先看get方法,先從mEntries獲取一個CacheHeader,若是爲空就直接返回,不爲空就從文件中取出相應的數據,最後轉化成CacheEntry返回。完了,再來看put方法,首先判斷空間是否裝下傳過來的Entry,先假設能裝的下,而後就直接寫入磁盤,也就是file中。同時也寫入map中,就是這個方法putEntry(key, e);而後再說它是怎麼判斷的,直接看代碼吧post
private void pruneIfNeeded(int neededSpace) {
if ((mTotalSize + neededSpace) < mMaxCacheSizeInBytes) {
return;
}
if (VolleyLog.DEBUG) {
VolleyLog.v("Pruning old cache entries.");
}
long before = mTotalSize;
int prunedFiles = 0;
long startTime = SystemClock.elapsedRealtime();
Iterator<Map.Entry<String, CacheHeader>> iterator = mEntries.entrySet().iterator();
while (iterator.hasNext()) {
Map.Entry<String, CacheHeader> entry = iterator.next();
CacheHeader e = entry.getValue();
boolean deleted = getFileForKey(e.key).delete();
if (deleted) {
mTotalSize -= e.size;
} else {
VolleyLog.d("Could not delete cache entry for key=%s, filename=%s",
e.key, getFilenameForKey(e.key));
}
iterator.remove();
prunedFiles++;
if ((mTotalSize + neededSpace) < mMaxCacheSizeInBytes * HYSTERESIS_FACTOR) {
break;
}
}
if (VolleyLog.DEBUG) {
VolleyLog.v("pruned %d files, %d bytes, %d ms",
prunedFiles, (mTotalSize - before), SystemClock.elapsedRealtime() - startTime);
}
}複製代碼
首先看當前的大小和須要的容量的和是否比最大容量小,小的話就直接返回,假如不夠的話,從mEntries中獲取他的迭代器,而後不斷獲取CacheHeader ,而後再從CacheHeader 取得key,再從file中刪除對應的緩存,而後也從mEntries刪除。而後再看容量是否知足所須要的。不知足再不斷的循環,直到知足爲止。這兒有一個關鍵,首先它利用LinkedHashMap的內置LRU算法,而後僅僅是將緩存頭部信息添加到內存,也就是Map中,而後將數據放在磁盤裏。當添加或者刪除的時候,都會先從Map中查詢,這樣大大減小磁盤操做,同時磁盤是有容量的,當添加時候容量不夠了,會先從Map中刪除,同時將磁盤中也刪除,這樣它兩就是聯動啊,同時擁有了LRU算法和容量,真特麼精彩。好了,這篇文章也就完了。具體Volley有沒有實現lru,你們自行判斷。Volley的流程也說完了,接下來的文章會探討它的一些代碼技巧、框架結構、打log 的方式等。要是文章有什麼錯誤或者不穩妥的地方,還望你們指出來,一塊兒討論提升。歡迎閱讀!