回溯算法實際上一個相似枚舉的搜索嘗試過程,主要是在搜索嘗試過程當中尋找問題的解,當發現已不知足求解條件時,就 「回溯」 返回,嘗試別的路徑。回溯法是一種選優搜索法,按選優條件向前搜索,以達到目標。但當探索到某一步時,發現原先選擇並不優或達不到目標,就退回一步從新選擇,這種走不通就退回再走的技術爲回溯法,而知足回溯條件的某個狀態的點稱爲 「回溯點」。許多複雜的,規模較大的問題均可以使用回溯法,有「通用解題方法」的美稱。 回溯算法的基本思想是:從一條路往前走,能進則進,不能進則退回來,換一條路再試。python
連接:https://leetcode-cn.com/tag/backtracking/
來源:力扣(LeetCode)
著做權歸做者全部。商業轉載請聯繫做者得到受權,非商業轉載請註明出處。
複製代碼
本文主要總結一下回溯算法的一些題目。語言主要是Golang。git
第一種是比較常規的回溯解法。算法
func subsets(nums []int) [][]int {
result := make([][]int, 0)
subsetsBT(&result, nums, []int{}, 0)
return result
}
func subsetsBT(result *[][]int, nums []int, temp []int, start int) {
//此處深拷貝temp,避免回溯的時候temp被修改後會影響以前保存的結果
c := make([]int, len(temp))
copy(c, temp)
*result = append(*result, c)
for i := start; i < len(nums); i++ {
temp = append(temp, nums[i])
subsetsBT(result, nums, temp, i+1)//不包含重複值
temp = temp[:len(temp)-1]
}
}
複製代碼
第二章方法就比較牛逼了,具體解釋參考此處。用二進制位的0,1表示是否選中當前位置的數。bash
func subsets(nums []int) [][]int {
result := make([][]int, 0)
n := 1 << uint(len(nums))
for i := 0; i < n; i++ {
temp := make([]int, 0)
for j := 0; j < len(nums); j++ {
if uint(i)>>uint(j)&1 == 1 {
temp = append(temp, nums[j])
}
}
result = append(result, temp)
}
return result
}
複製代碼
常規解法。當temp裏的元素個數等於給定的K時,找到一個知足條件的解。app
func combine(n int, k int) [][]int {
var result = make([][]int, 0)
combineBT(n, k, 1, []int{}, &result)
return result
}
func combineBT(n, k, start int, temp []int, result *[][]int) {
if len(temp) == k {
c := make([]int, len(temp))
copy(c, temp)
*result = append(*result, c)
return
}
for i := start; i <= n; i++ {
temp = append(temp, i)
combineBT(n, k, i+1, temp, result)
temp = temp[0 : len(temp)-1]
}
}
複製代碼
常規解法,要先排序一下。每次先嚐試減去當前元素,要是減去後還大於0,則表示能夠繼續往下走。而後由於能夠重複使用元素,因此回溯的時候從i開始繼續下一次。直到目標值減到0後,找到一個知足條件的解空間。ui
func combinationSum(candidates []int, target int) [][]int {
var result = make([][]int, 0)
sort.Ints(candidates)
combinationSumBT(&result, candidates, []int{}, target, 0)
return result
}
func combinationSumBT(result *[][]int, candidates []int, temp []int, target int, start int) {
if target == 0 {
c := make([]int, len(temp))
copy(c, temp)
*result = append(*result, c)
return
}
for i := start; i < len(candidates); i++ {
if target-candidates[i] >= 0 {
target -= candidates[i]
temp = append(temp, candidates[i])
combinationSumBT(result, candidates, temp, target, i)//能夠包含已經用過的值,因此從i開始,
temp = temp[0 : len(temp)-1]//回溯
target += candidates[i]//得把當前用過的值再加回去。
} else {
return
}
}
}
複製代碼
和第一個很像,可是每一個數字只能用一次且解空間不能包含重複解。spa
func combinationSum2(candidates []int, target int) [][]int {
sort.Ints(candidates)
var result = make([][]int, 0)
combinationSumBT2(&result, candidates, []int{}, target, 0)
return result
}
func combinationSumBT2(result *[][]int, candidates []int, temp []int, target int, start int) {
if target == 0 {
c := make([]int, len(temp))
copy(c, temp)
*result = append(*result, c)
return
}
for i := start; i < len(candidates); i++ {
if target-candidates[i] >= 0 {
//好比[10,1,2,7,6,1,5], target = 8
//排好序後[1,1,2,5,6,7,10]
//在第一個for循環裏,先遍歷到第一個1,通過一系列操做,獲得解集[1,7]
//而後仍是第一個for循環裏,又遍歷到後面的1,如今是不須要[第二個1,7]這個解集了,因此跳過。
if i != start && candidates[i] == candidates[i-1] { //由於解空間不能有重複
continue
}
target -= candidates[i]
temp = append(temp, candidates[i])
combinationSumBT2(result, candidates, temp, target, i+1)//由於不能重複使用,因此從i+1開始
temp = temp[0 : len(temp)-1]
target += candidates[i]
} else {
return
}
}
}
複製代碼
func combinationSum3(k int, n int) [][]int {
var result = make([][]int, 0)
combinationSumBT3(&result, []int{}, k, n, 1)
return result
}
func combinationSumBT3(result *[][]int, temp []int, k int, target int, start int) {
//和第一個很像,在target的基礎上增長了一個k的限制。
if target == 0 && k == 0 {
c := make([]int, len(temp))
copy(c, temp)
*result = append(*result, c)
return
}
for i := start; i <= 9; i++ {
if target-i >= 0 {
target -= i
k--
temp = append(temp, i)
combinationSumBT3(result, temp, k, target, i+1)//每一個組合不能有重複
temp = temp[0 : len(temp)-1]
target += i
k++
} else {
return
}
}
}
複製代碼
方法一是常規的回溯。code
var wordsMap = map[int]string{2: "abc", 3: "def", 4: "ghi", 5: "jkl", 6: "mno", 7: "pqrs", 8: "tuv", 9: "wxyz"}
func letterCombinations(digits string) []string {
if len(digits) == 0 {
return []string{}
}
answer := make([]string, 0)
letterCombinationsBT(&answer, digits, "", 0)
return answer
}
func letterCombinationsBT(answer *[]string, digits string, temp string, index int) {
if len(temp) == len(digits) {
*answer = append(*answer, temp)
return
}
char := digits[index] - '0'
letter := wordsMap[int(char)]
//fmt.Println(int(char), letter)
for i := 0; i < len(letter); i++ {
letterCombinationsBT(answer, digits, temp+string(letter[i]), index+1)
}
return
}
複製代碼
方法二就比較牛逼了,把按的數字對應的字母依次放到隊列中,而後和下一個數字的字母挨個拼,拼完再扔到隊尾。 好比我按了 "23" 對應 abc 和 def 我先在隊列[從左到右表示隊首到隊尾]初始化一個空字符串。
" "
而後遍歷第一個數字 2 ,對應的字母是 abc,而後用隊列頭部的空字符串 "" 依次和abc作拼接,獲得 "a", "b", "c", 而後依次從隊尾扔到隊列,如今隊列是
a b c
遍歷完2對應的字母再繼續遍歷3的。3對應def。取出隊首的"a",依次和後面的def拼接,獲得 "ad", "ae", "af",而後扔到隊尾,如今隊列裏是
b c ad ae af
繼續重複這個操做便可完成最後的遍歷,很方便。排序
c ad ae af bd be bf隊列
ad ae af bd be bf cd ce cf
func letterCombinations(digits string) []string {
if len(digits) == 0 {
return []string{}
}
var words = [8]string{"abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"}
queue := make([]string, 0)
queue = append(queue, "")
for i := 0; i < len(digits); i++ {
n := digits[i] - '2'
size := len(queue)
for j := 0; j < size; j++ {
st := queue[0]
queue = queue[1:]
for _, ch := range words[n] {
temp := st + string(ch)
queue = append(queue, temp)
}
}
}
return queue
}
複製代碼
func exist(board [][]byte, word string) bool {
if len(word) == 0 {
return false
}
for i := 0; i < len(board); i++ {
for j := 0; j < len(board[0]); j++ {
if existWordsBT(board, word, i, j, 0) {
return true
}
}
}
return false
}
var direction = [][]int{{-1, 0}, {0, -1}, {0, 1}, {1, 0}}
func existWordsBT(board [][]byte, word string, i, j, index int) bool {
//遍歷到最後一個單詞的時候,要是等於就OK
if index == len(word)-1 {
return word[index] == board[i][j]
}
//fmt.Println(index, string(board[i][j]), visited[i][j])
if board[i][j] == word[index] {
temp := board[i][j]
board[i][j] = '%' //標記當前字母被使用過了
//visited[i][j] = 1
for k := 0; k < 4; k++ { //套路,四個方向
newX := i + direction[k][0]
newY := j + direction[k][1]
//四個新方向在格子內且沒被用過就能夠繼續下去了
if newX >= 0 && newX < len(board) && newY >= 0 && newY < len(board[0]) && board[newX][newY] != '%' {
if existWordsBT(board, word, newX, newY, index+1) {
return true
}
}
}
//visited[i][j] = 0
board[i][j] = temp //回溯到沒用過當前單詞
}
return false
}
複製代碼
func maxAreaOfIsland(grid [][]int) int {
row, col := len(grid), len(grid[0])
ret := 0
for i := 0; i < row; i++ {
for j := 0; j < col; j++ {
if grid[i][j] == 1 {
ret = int(math.Max(float64(dfs(grid, i, j, 0)), float64(ret)))
}
}
}
return ret
}
func dfs(grid [][]int, i int, j int, sum int) int {
row, col := len(grid), len(grid[0])
if i < 0 || j < 0 || i >= row || j >= col || grid[i][j] != 1 {
return 0
}
sum++
grid[i][j] = 9
sum += dfs(grid, i-1, j, 0)
sum += dfs(grid, i+1, j, 0)
sum += dfs(grid, i, j-1, 0)
sum += dfs(grid, i, j+1, 0)
return sum
}
複製代碼
下面這種應該也是能夠的。並且從結果來看比第一張方法還快一些。
func maxAreaOfIsland2(grid [][]int) int {
row, col := len(grid), len(grid[0])
ret := 0
for i := 0; i < row; i++ {
for j := 0; j < col; j++ {
ret = myMax(ret, maxAreaBT(grid, i, j, 0))
}
}
return ret
}
func maxAreaBT(grid [][]int, i int, j int, sum int) int {
row, col := len(grid), len(grid[0])
if i < 0 || j < 0 || i >= row || j >= col || grid[i][j] != 1 {
return 0
}
if grid[i][j] == 1 {
grid[i][j] = 9
sum++
fmt.Println(i, j, sum)
for k := 0; k < 4; k++ {
newX := i + direction[k][0]
newY := j + direction[k][1]
if newX >= 0 && newY >= 0 && newX < row && newY < col && grid[newX][newY] == 1 {
fmt.Println(99, newX, newY, sum, grid)
sum = maxAreaBT(grid, newX, newY, sum)
}
}
//grid[i][j] = 1
return sum
} else {
return 0
}
}
複製代碼