CF528Dios
能夠預處理出\(S\)每一個位置能匹配哪些字符
對每種字符
構造兩個序列
若是\(S[i]\)能夠匹配該字符,則該位置爲\(0\),不然爲\(1\)
若是\(T[i]\)能夠匹配該字符,則該位置爲\(1\),不然爲\(0\)
將\(T\)翻轉一下作卷積
若是某個字符意義下的某個位置爲\(1\),就說明出現了\(T\)能匹配而\(S\)不能的狀況,此時\(T\)不匹配\(S\)
不然\(T\)匹配\(S\)
即尋找有多少位置都爲\(0\)spa
#include<algorithm> #include<iostream> #include<cstdlib> #include<cstring> #include<cstdio> #include<vector> #include<queue> #include<cmath> #include<map> #define LL long long int #define REP(i,n) for (int i = 1; i <= (n); i++) #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt) #define cls(s,v) memset(s,v,sizeof(s)) #define mp(a,b) make_pair<int,int>(a,b) #define cp pair<int,int> using namespace std; const int maxn = 800005,maxm = 100005,INF = 0x3f3f3f3f; inline int read(){ int out = 0,flag = 1; char c = getchar(); while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();} while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();} return flag ? out : -out; } const int G = 3,P = 998244353; inline int qpow(int a,int b){ int re = 1; for (; b; b >>= 1,a = 1ll * a * a % P) if (b & 1) re = 1ll * re * a % P; return re; } int R[maxn],c[maxn]; void NTT(int* a,int n,int f){ for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]); for (int i = 1; i < n; i <<= 1){ int gn = qpow(G,(P - 1) / (i << 1)); for (int j = 0; j < n; j += (i << 1)){ int g = 1,x,y; for (int k = 0; k < i; k++,g = 1ll * g * gn % P){ x = a[j + k],y = 1ll * g * a[j + k + i] % P; a[j + k] = (x + y) % P,a[j + k + i] = (x + P - y) % P; } } } if (f == 1) return; int nv = qpow(n,P - 2); reverse(a + 1,a + n); for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P; } void conv(int* a,int* b,int deg1,int deg2){ int n = 1,L = 0; while (n <= (deg1 + deg2)) n <<= 1,L++; for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1)); for (int i = 1; i <= deg2; i++) c[i] = b[i]; for (int i = deg2 + 1; i < n; i++) c[i] = 0; c[0] = 0; NTT(a,n,1); NTT(c,n,1); for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * c[i] % P; NTT(a,n,-1); } int A[4][maxn],B[4][maxn]; char ss[maxn],tt[maxn]; int N,M,K,last[4],S[maxn],T[maxn]; int id(char c){ if (c == 'A') return 0; if (c == 'C') return 1; if (c == 'G') return 2; return 3; } int main(){ N = read(); M = read(); K = read(); scanf("%s%s",ss + 1,tt + 1); reverse(tt + 1,tt + 1 + M); REP(i,N) S[i] = id(ss[i]); REP(i,M) T[i] = id(tt[i]); REP(i,N) for (int j = 0; j < 4; j++) A[j][i] = 1; for (int i = 1; i <= N; i++){ last[S[i]] = i; for (int j = 0; j < 4; j++){ if (last[j] && i - last[j] <= K) A[j][i] = 0; } } for (int j = 0; j < 4; j++) last[j] = 0; for (int i = N; i; i--){ last[S[i]] = i; for (int j = 0; j < 4; j++){ if (last[j] && last[j] - i <= K) A[j][i] = 0; } } for (int i = 1; i <= M; i++){ for (int j = 0; j < 4; j++){ if (T[i] == j) B[j][i] = 1; else B[j][i] = 0; } } for (int j = 0; j < 4; j++) conv(A[j],B[j],N,M); int ans = 0; for (int i = 1 + M; i <= N + 1; i++){ int flag = 1; for (int j = 0; j < 4; j++) if (A[j][i]){flag = 0; break;} ans += flag; } printf("%d\n",ans); return 0; }