Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.node
Below is one possible representation of s1 = "great"
:面試
great / \ gr eat / \ / \ g r e at / \ a t
To scramble the string, we may choose any non-leaf node and swap its two children.算法
For example, if we choose the node "gr"
and swap its two children, it produces a scrambled string "rgeat"
.數組
rgeat / \ rg eat / \ / \ r g e at / \ a t
We say that "rgeat"
is a scrambled string of "great"
.google
Similarly, if we continue to swap the children of nodes "eat"
and "at"
, it produces a scrambled string "rgtae"
.spa
rgtae / \ rg tae / \ / \ r g ta e / \ t a
We say that "rgtae"
is a scrambled string of "great"
.code
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.blog
分析:
這個問題是google的面試題。因爲一個字符串有不少種二叉表示法,貌似很難判斷兩個字符串是否能夠作這樣的變換。
對付複雜問題的方法是從簡單的特例來思考,從而找出規律。
先考察簡單狀況:
字符串長度爲1:很明顯,兩個字符串必須徹底相同才能夠。
字符串長度爲2:當s1="ab", s2只有"ab"或者"ba"才能夠。
對於任意長度的字符串,咱們能夠把字符串s1分爲a1,b1兩個部分,s2分爲a2,b2兩個部分,知足((a1~a2) && (b1~b2))或者 ((a1~b2) && (a1~b2))
如此,咱們找到了解決問題的思路。首先咱們嘗試用遞歸來寫。
解法一(遞歸):
兩個字符串的類似的必備條件是含有相同的字符集。簡單的作法是把兩個字符串的字符排序後,而後比較是否相同。
加上這個檢查就能夠大大的減小遞歸次數。
代碼以下:排序
1 class Solution { 2 public: 3 bool isScramble(string s1, string s2) { 4 int l1 = s1.length(); 5 int l2 = s2.length(); 6 if (l1 != l2) return false; 7 if (l1 == 1) return s1 == s2; 8 string st1 = s1, st2 = s2; 9 sort(st1.begin(), st1.end()); 10 sort(st2.begin(), st2.end()); 11 for (int i = 0; i < l1; ++i) { 12 if (st1[i] != st2[i]) { 13 return false; 14 } 15 } 16 string s11, s12, s21, s22; 17 bool res = false; 18 for (int i = 1; i < l1 && !res; ++i) { 19 s11 = s1.substr(0, i); 20 s12 = s1.substr(i, l1 - i); 21 s21 = s2.substr(0, i); 22 s22 = s2.substr(i, l1 - i); 23 res = isScramble(s11, s21) && isScramble(s12, s22); 24 if (!res) { 25 s21 = s2.substr(0, l1 - i); 26 s22 = s2.substr(l1 - i, i); 27 res = isScramble(s11, s22) && isScramble(s12, s21); 28 } 29 } 30 return res; 31 } 32 };
解法二(動態規劃):
減小重複計算的方法就是動態規劃。動態規劃是一種神奇的算法技術,不親自去寫,是很難徹底掌握動態規劃的。
這裏我使用了一個三維數組boolean result[len][len][len],其中第一維爲子串的長度,第二維爲s1的起始索引,第三維爲s2的起始索引。
result[k][i][j]表示s1[i...i+k]是否能夠由s2[j...j+k]變化得來。遞歸
1 public class Solution { 2 public boolean isScramble(String s1, String s2) { 3 int len = s1.length(); 4 if(len!=s2.length()){ 5 return false; 6 } 7 if(len==0){ 8 return true; 9 } 10 11 char[] c1 = s1.toCharArray(); 12 char[] c2 = s2.toCharArray(); 13 14 boolean[][][] result = new boolean[len][len][len]; 15 for(int i=0;i<len;++i){ 16 for(int j=0;j<len;++j){ 17 result[0][i][j] = (c1[i]==c2[j]); 18 } 19 } 20 21 for(int k=2;k<=len;++k){ 22 for(int i=len-k;i>=0;--i){ 23 for(int j=len-k;j>=0;--j){ 24 boolean r = false; 25 for(int m=1;m<k && !r;++m){ 26 r = (result[m-1][i][j] && result[k-m-1][i+m][j+m]) || (result[m-1][i][j+k-m] && result[k-m-1][i+m][j]); 27 } 28 result[k-1][i][j] = r; 29 } 30 } 31 } 32 33 return result[len-1][0][0]; 34 } 35 }