【algo&ds】8.最小生成樹

1.最小生成樹介紹

什麼是最小生成樹?html

最小生成樹(Minimum spanning tree,MST)是在一個給定的無向圖G(V,E)中求一棵樹T,使得這棵樹擁有圖G中的全部頂點,且全部邊都是來自圖G中的邊,而且知足整棵樹的邊權值和最小。ios

2.prim算法

和Dijkstra算法很像!!請看以下Gif圖,prim算法的核心思想是對圖G(V,E)設置集合S,存放已被訪問的頂點,而後每次從集合V-S中選擇與集合S的最短距離最小的一個頂點(記爲u),訪問並加入集合S。以後,令頂點u爲中間點,優化全部從u能到達的頂點v與集合s之間的最短距離。這樣的操做執行n次,直到集合s中包含全部頂點。算法

prim

不一樣的是,Dijkstra算法中的dist是從源點s到頂點w的最短路徑;而prim算法中的dist是從集合S到頂點w的最短路徑,如下是他們的僞碼描述對比,關於Dijkstra算法的詳細描述請參考文章ide

Snipaste_2019-11-24_15-30-32

算法實現:測試

#include<iostream>
#include<vector>
#define INF 100000
#define MaxVertex 105
typedef int Vertex; 
int G[MaxVertex][MaxVertex];
int parent[MaxVertex];   // 並查集 
int dist[MaxVertex]; // 距離 
int Nv;    // 結點 
int Ne;    // 邊 
int sum;  // 權重和 
using namespace std; 
vector<Vertex> MST;  // 最小生成樹 

// 初始化圖信息 
void build(){
    Vertex v1,v2;
    int w;
    cin>>Nv>>Ne;
    for(int i=1;i<=Nv;i++){
        for(int j=1;j<=Nv;j++)
            G[i][j] = 0;  // 初始化圖 
        dist[i] = INF;   // 初始化距離
        parent[i] = -1;  // 初始化並查集 
    }
    // 初始化點
    for(int i=0;i<Ne;i++){
        cin>>v1>>v2>>w;
        G[v1][v2] = w;
        G[v2][v1] = w;
    }
}

// Prim算法前的初始化 
void IniPrim(Vertex s){
    dist[s] = 0;
    MST.push_back(s);
    for(Vertex i =1;i<=Nv;i++)
        if(G[s][i]){
            dist[i] = G[s][i];
            parent[i] = s;
        } 
}

// 查找未收錄中dist最小的點 
Vertex FindMin(){
    int min = INF;
    Vertex xb = -1;
    for(Vertex i=1;i<=Nv;i++)
        if(dist[i] && dist[i] < min){ 
            min = dist[i];
            xb = i;
        }
    return xb;
}

void output(){
    cout<<"被收錄順序:"<<endl; 
    for(Vertex i=1;i<=Nv;i++)
        cout<<MST[i]<<" ";
    cout<<"權重和爲:"<<sum<<endl; 
    cout<<"該生成樹爲:"<<endl; 
    for(Vertex i=1;i<=Nv;i++)
        cout<<parent[i]<<" ";
}

void Prim(Vertex s){
    IniPrim(s);
    while(1){
        Vertex v = FindMin();
        if(v == -1)
            break;
        sum += dist[v];
        dist[v] = 0;
        MST.push_back(v);
        for(Vertex w=1;w<=Nv;w++)
            if(G[v][w] && dist[w])
                if(G[v][w] < dist[w]){
                    dist[w] = G[v][w];
                    parent[w] = v;
                }
    }
}


int main(){
    build();
    Prim(1);
    output();
    return 0;
}

關於prim算法的更加詳細講解請參考視頻優化

3.kruskal算法

Kruskal算法也能夠用來解決最小生成樹的問題,其算法思想很容易理解,典型的邊貪心,其算法思想爲:ui

  • 在初始狀態時隱去圖中全部的邊,這樣圖中每一個頂點都是一個單獨的連通塊,一共有n個連通塊
  • 對全部邊按邊權從小到大進行排序
  • 按邊權從小到大測試全部邊,若是當前測試邊所鏈接的兩個頂點不在同一個連通塊中,則把這條測試邊加入當前最小生成樹中,不然,將邊捨棄。
  • 重複執行上一步驟,直到最小生成樹中的邊數等於總頂點數減一 或者測試完全部邊時結束;若是結束時,最小生成樹的邊數小於總頂點數減一,說明該圖不連通。

請看下面的Gif圖!spa

kruskal

算法實現:code

#include<iostream>
#include<string>
#include<vector>
#include<queue>
#define INF 100000
#define MaxVertex 105
typedef int Vertex; 
int G[MaxVertex][MaxVertex];
int parent[MaxVertex];   // 並查集最小生成樹 
int Nv;    // 結點 
int Ne;    // 邊 
int sum;  // 權重和 
using namespace std; 
struct Node{
    Vertex v1;
    Vertex v2;
    int weight; // 權重 
    // 重載運算符成最大堆 
    bool operator < (const Node &a) const
    {
        return weight>a.weight;
    }
};
vector<Node> MST;  // 最小生成樹 
priority_queue<Node> q;   // 最小堆 

// 初始化圖信息 
void build(){
    Vertex v1,v2;
    int w;
    cin>>Nv>>Ne;
    for(int i=1;i<=Nv;i++){
        for(int j=1;j<=Nv;j++)
            G[i][j] = 0;  // 初始化圖
        parent[i] = -1;
    }
    // 初始化點
    for(int i=0;i<Ne;i++){
        cin>>v1>>v2>>w;
        struct Node tmpE;
        tmpE.v1 = v1;
        tmpE.v2 = v2;
        tmpE.weight = w;
        q.push(tmpE); 
    }
}

//  路徑壓縮查找 
int Find(int x){
    if(parent[x] < 0)
        return x;
    else
        return parent[x] = Find(parent[x]);
} 

//  按秩歸併 
void Union(int x1,int x2){
    if(parent[x1] < parent[x2]){
        parent[x1] += parent[x2];
        parent[x2] = x1;
    }else{
        parent[x2] += parent[x1];
        parent[x1] = x2;
    }
} 

void Kruskal(){
    // 最小生成樹的邊不到 Nv-1 條且還有邊 
    while(MST.size()!= Nv-1 && !q.empty()){
        Node E = q.top();  // 從最小堆取出一條權重最小的邊
        q.pop(); // 出隊這條邊 
        if(Find(E.v1) != Find(E.v2)){  // 檢測兩條邊是否在同一集合 
            sum += E.weight; 
            Union(E.v1,E.v2);     // 並起來 
            MST.push_back(E);
        }
    }
    
} 


void output(){
    cout<<"被收錄順序:"<<endl; 
    for(Vertex i=0;i<Nv;i++)
        cout<<MST[i].weight<<" ";
    cout<<"權重和爲:"<<sum<<endl; 
    for(Vertex i=1;i<=Nv;i++)
        cout<<parent[i]<<" ";
    cout<<endl;
}


int main(){
    build();
    Kruskal();
    output();
    return 0;
}

關於kruskal算法更詳細的講解請參考視頻視頻

相關文章
相關標籤/搜索
本站公眾號
   歡迎關注本站公眾號,獲取更多信息