[Swift]LeetCode333. 最大的二分搜索子樹 $ Largest BST Subtree

★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公衆號:山青詠芝(shanqingyongzhi)
➤博客園地址:山青詠芝(https://www.cnblogs.com/strengthen/
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址: http://www.javashuo.com/article/p-zxkxcnsx-hu.html 
➤若是連接不是山青詠芝的博客園地址,則多是爬取做者的文章。
➤原文已修改更新!強烈建議點擊原文地址閱讀!支持做者!支持原創!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★html

Given a binary tree, find the largest subtree which is a Binary Search Tree (BST), where largest means subtree with largest number of nodes in it.node

Note:
A subtree must include all of its descendants.
Here's an example:git

    10
    / \
   5  15
  / \   \ 
 1   8   7

The Largest BST Subtree in this case is the highlighted one. 
The return value is the subtree's size, which is 3.github

Hint:算法

  1. You can recursively use algorithm similar to 98. Validate Binary Search Tree at each node of the tree, which will result in O(nlogn) time complexity.

Follow up:
Can you figure out ways to solve it with O(n) time complexity?微信


對於二叉樹,找到最大的子樹,即二叉搜索樹(BST),其中最大的子樹表示其中節點數最多的子樹。this

 

注:spa

子樹必須包含其全部後代。code

下面是一個例子:htm

    10
    / \
   5  15
  / \   \ 
 1   8   7

在這種狀況下,最大的BST子樹是突出顯示的子樹。

返回值是子樹的大小,即3。

提示:

您能夠遞歸地使用相似於98的算法。在樹的每一個節點驗證二進制搜索樹,這將致使O(nlogn)時間複雜性。

跟進:

你能想出解決O(N)時間複雜性問題的方法嗎?


Solution:

 1 public class TreeNode {
 2     public var val: Int
 3     public var left: TreeNode?
 4     public var right: TreeNode?
 5     public init(_ val: Int) {
 6         self.val = val
 7         self.left = nil
 8         self.right = nil
 9     }
10 }
11 
12 class Solution {
13     func largestBSTSubtree(_ root: TreeNode?) -> Int {
14         var res:[Int] = helper(root)   
15         return res[2]
16     }
17     
18     func helper(_ node: TreeNode?) -> [Int]
19     {
20         if node == nil
21         {
22             return [Int.max,Int.min,0]
23         }
24         var left:[Int] = helper(node?.left)
25         var right:[Int] = helper(node?.right)
26         if node!.val > left[1] && node!.val < right[0]
27         {
28             return [min(node!.val, left[0]), max(node!.val, right[1]), left[2] + right[2] + 1]
29         }
30         else
31         {
32             return [Int.min, Int.max, max(left[2], right[2])]
33         }
34     }
35 }
相關文章
相關標籤/搜索