『教程』Batch Normalization 層介紹html
下面有莫凡的對於批處理的解釋:python
fc_mean,fc_var = tf.nn.moments( Wx_plus_b, axes=[0], # 想要 normalize 的維度, [0] 表明 batch 維度 # 若是是圖像數據, 能夠傳入 [0, 1, 2], 至關於求[batch, height, width] 的均值/方差, 注意不要加入 channel 維度 ) scale = tf.Variable(tf.ones([out_size])) shift = tf.Variable(tf.zeros([out_size])) epsilon = 0.001 Wx_plus_b = tf.nn.batch_normalization(Wx_plus_b,fc_mean,fc_var,shift,scale,epsilon) # 上面那一步, 在作以下事情: # Wx_plus_b = (Wx_plus_b - fc_mean) / tf.sqrt(fc_var + 0.001) # Wx_plus_b = Wx_plus_b * scale + shift
class batch_norm(): '''batch normalization層''' def __init__(self, epsilon=1e-5, momentum=0.9, name='batch_norm'): ''' 初始化 :param epsilon: 防零極小值 :param momentum: 滑動平均參數 :param name: 節點名稱 ''' with tf.variable_scope(name): self.epsilon = epsilon self.momentum = momentum self.name = name def __call__(self, x, train=True): # 一個封裝了的會在內部調用batch_normalization進行正則化的高級接口 return tf.contrib.layers.batch_norm(x, decay=self.momentum, # 滑動平均參數 updates_collections=None, epsilon=self.epsilon, scale=True, is_training=train, # 影響滑動平均 scope=self.name)
1.app
Note: when training, the moving_mean and moving_variance need to be updated.
By default the update ops are placed in `tf.GraphKeys.UPDATE_OPS`, so they
need to be added as a dependency to the `train_op`. For example:
```python
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss)
```
One can set updates_collections=None to force the updates in place, but that
can have a speed penalty, especially in distributed settings.dom
2.ide
is_training: Whether or not the layer is in training mode. In training mode
it would accumulate the statistics of the moments into `moving_mean` and
`moving_variance` using an exponential moving average with the given
`decay`. When it is not in training mode then it would use the values of
the `moving_mean` and the `moving_variance`.
函數
實際上tf.contrib.layers.batch_norm對於tf.nn.moments和tf.nn.batch_normalization進行了一次封裝,這個類又進行了一次封裝(主要是制訂了一部分默認參數),實際操做時能夠僅僅使用tf.contrib.layers.batch_norm函數,它已經足夠方便了。spa
添加了滑動平均處理以後,也就是不使用封裝,直接使用tf.nn.moments和tf.nn.batch_normalization實現的batch_norm函數:orm
def batch_norm(x,beta,gamma,phase_train,scope='bn',decay=0.9,eps=1e-5): with tf.variable_scope(scope): # beta = tf.get_variable(name='beta', shape=[n_out], initializer=tf.constant_initializer(0.0), trainable=True) # gamma = tf.get_variable(name='gamma', shape=[n_out], # initializer=tf.random_normal_initializer(1.0, stddev), trainable=True) batch_mean,batch_var = tf.nn.moments(x,[0,1,2],name='moments') ema = tf.train.ExponentialMovingAverage(decay=decay) def mean_var_with_update(): ema_apply_op = ema.apply([batch_mean,batch_var]) with tf.control_dependencies([ema_apply_op]): return tf.identity(batch_mean),tf.identity(batch_var) # identity以後會把Variable轉換爲Tensor併入圖中, # 不然因爲Variable是獨立於Session的,不會被圖控制control_dependencies限制 mean,var = tf.cond(phase_train, mean_var_with_update, lambda: (ema.average(batch_mean),ema.average(batch_var))) normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, eps) return normed
另外一種將滑動平均展開了的方式,htm
def batch_norm(x, size, training, decay=0.999): beta = tf.Variable(tf.zeros([size]), name='beta') scale = tf.Variable(tf.ones([size]), name='scale') pop_mean = tf.Variable(tf.zeros([size])) pop_var = tf.Variable(tf.ones([size])) epsilon = 1e-3 batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2]) train_mean = tf.assign(pop_mean, pop_mean * decay + batch_mean * (1 - decay)) train_var = tf.assign(pop_var, pop_var * decay + batch_var * (1 - decay)) def batch_statistics(): with tf.control_dependencies([train_mean, train_var]): return tf.nn.batch_normalization(x, batch_mean, batch_var, beta, scale, epsilon, name='batch_norm') def population_statistics(): return tf.nn.batch_normalization(x, pop_mean, pop_var, beta, scale, epsilon, name='batch_norm') return tf.cond(training, batch_statistics, population_statistics)
注, tf.cond:流程控制,參數一True,則執行參數二的函數,不然執行參數三函數。blog