ElastricSearch打分簡介

一、Elasticsearch的打分公式node

Elasticsearch的默認打分公式是lucene的打分公式,主要分爲兩部分的計算,一部分是計算query部分的得分,另外一部分是計算field部分的得分,下面給出ES官網給出的打分公式:json

score(q,d)  =    
            queryNorm(q)    
          · coord(q,d)      
          · ∑ (             
                tf(t in d)     
              · idf(t)²        
              · t.getBoost()   
              · norm(t,d)      
            ) (t in q)

queryNorm(q):

對查詢進行一個歸一化,不影響排序,由於對於同一個查詢這個值是相同的,可是對term於ES來講,必須在分片是1的時候纔不影響排序,不然的話,仍是會有一些細小的區別,有幾個分片就會有幾個不一樣的queryNorm值ui

queryNorm(q)=1 / √sumOfSquaredWeights spa

上述公式是ES官網的公式,這是在默認query boost爲1,而且在默認term boost爲1 的狀況下的打分,其中code

sumOfSquaredWeights =idf(t1)*idf(t1)+idf(t2)*idf(t2)+...+idf(tn)*idf(tn)orm

其中n爲在query裏面切成term的個數,可是上面所有是在默認爲1的狀況下的計算,實際上的計算公式以下所示:排序

coord(q,d):

coord(q,d)是一個協調因子它的值以下:ip

coord(q,d)=overlap/maxoverlap

 

其中overlap是檢索命中query中term的個數,maxoverlap是query中總共的term個數,例如查詢詞爲「無線通訊」,使用默認分詞器,若是文檔爲「通知他們開會」,只會有一個「通」命中,這個時候它的值就是1/4=0.25ci

tf(t in d):文檔

即term t在文檔中出現的個數,它的計算公式官網給出的是:

tf(t in d) = √frequency

 

即出現的個數進行開方,這個沒什麼能夠講述的,實際打分也是如此

 

idf(t):

這個的意思是出現的逆詞頻數,即召回的文檔在總文檔中出現過多少次,這個的計算在ES中與lucene中有些區別,只有在分片數爲1的狀況下,與lucene的計算是一致的,若是不惟一,那麼每個分片都有一個不一樣的idf的值,它的計算方式以下所示:

idf(t) = 1 + log ( numDocs / (docFreq + 1))

 

其中,log是以e爲底的,不是以10或者以2爲底,這點須要注意,numDocs是指全部的文檔個數,若是有分片的話,就是指的是在當前分片下總的文檔個數,docFreq是指召回文檔的個數,若是有分片對應的也是在當前分片下召回的個數,這點是計算的時候與lucene不一樣之處,若是想驗證是否正確,只需將分片shard的個數設置爲1便可。

 

t.getboost():

對於每個term的權值,沒仔細研究這個項,我的理解的是,若是對一個field設置boost,那麼若是在這個boost召回的話,每個term的boost都是該field的boost

norm(t,d):

對於field的標準化因子,在官方給的解釋是field越短,若是召回的話權重越大,例如搜索無線通訊,一個是很長的內容,但都是包含這幾個字,可是並非咱們想要的,另一個內容很短,可是完整包含了無線通訊,咱們不能由於後面的只出現了一次就認爲權重是低的,相反,權重應當是更高的,其計算公式以下所示:



其中d.getboost代表若是該文檔權重越大那麼久越重要

f.getboost代表該field的權值越大,越重要

lengthnorm表示該field越長,越不重要,越短,越重要,在官方文檔給出的公式中,默認boost所有爲1,在此給出官方文檔的打分公式:

norm(d) = 1 / √numTerms

以上的是理論上的,看看實際例子

GET act_shop-2018.01.12/shop/_search
{
  "size": 1, 
  "query": {
    "term": {
      "name.keyword": "星巴克"
    }
  }
  , "explain": true
}

結果是

{
  "took": 25,
  "timed_out": false,
  "_shards": {
    "total": 150,
    "successful": 150,
    "failed": 0
  },
  "hits": {
    "total": 127667,
    "max_score": 15.511484,
    "hits": [
      {
        "_shard": "[act_shop-2018.01.12][80]",
        "_node": "6vfIeV95QOK1vAcLdx6CEA",
        "_index": "act_shop-2018.01.12",
        "_type": "shop",
        "_id": "187672",
        "_score": 15.511484,
        "_routing": "36341",
        "_parent": "36341",
        "_source": {
          "status": 1,
          "city": {
            "id": 2084,
            "name": "虹口區"
          },
          "update_time": "2017-10-23 15:23:00.329000",
          "tel": [
            "021-65200108"
          ],
          "name": "星巴克(涼城店)",
          "tags": [
            "餐飲服務",
            "咖啡廳",
            "咖啡廳"
          ],
          "tags_enrich": {
            "name": "美食",
            "id": 10
          },
          "id": 187672,
          "label": "have_act",
          "create_time": "2017-01-11 14:59:43.950000",
          "city_enrich": {
            "region": "華東地區",
            "name": "上海",
            "level": 1
          },
          "address": "車站南路330弄2號、6號第1、二層的4839F01059",
          "coordinate": {
            "lat": 31.29496,
            "lon": 121.475442
          },
          "brand": {
            "id": 490,
            "name": "星巴克"
          }
        },
        "_explanation": {
          "value": 15.511484,
          "description": "sum of:",
          "details": [
            {
              "value": 15.511484,
              "description": "sum of:",
              "details": [
                {
                  "value": 4.7601295,
                  "description": "weight(name:星 in 6914) [PerFieldSimilarity], result of:",
                  "details": [
                    {
                      "value": 4.7601295,
                      "description": "score(doc=6914,freq=1.0 = termFreq=1.0\n), product of:",
                      "details": [
                        {
                          "value": 4.314013,
                          "description": "idf, computed as log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",
                          "details": [
                            {
                              "value": 159,
                              "description": "docFreq",
                              "details": []
                            },
                            {
                              "value": 11920,
                              "description": "docCount",
                              "details": []
                            }
                          ]
                        },
                        {
                          "value": 1.103411,
                          "description": "tfNorm, computed as (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) from:",
                          "details": [
                            {
                              "value": 1,
                              "description": "termFreq=1.0",
                              "details": []
                            },
                            {
                              "value": 1.2,
                              "description": "parameter k1",
                              "details": []
                            },
                            {
                              "value": 0.75,
                              "description": "parameter b",
                              "details": []
                            },
                            {
                              "value": 9.224329,
                              "description": "avgFieldLength",
                              "details": []
                            },
                            {
                              "value": 7.111111,
                              "description": "fieldLength",
                              "details": []
                            }
                          ]
                        }
                      ]
                    }
                  ]
                },
                {
                  "value": 5.0423846,
                  "description": "weight(name:巴 in 6914) [PerFieldSimilarity], result of:",
                  "details": [
                    {
                      "value": 5.0423846,
                      "description": "score(doc=6914,freq=1.0 = termFreq=1.0\n), product of:",
                      "details": [
                        {
                          "value": 4.5698156,
                          "description": "idf, computed as log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",
                          "details": [
                            {
                              "value": 123,
                              "description": "docFreq",
                              "details": []
                            },
                            {
                              "value": 11920,
                              "description": "docCount",
                              "details": []
                            }
                          ]
                        },
                        {
                          "value": 1.103411,
                          "description": "tfNorm, computed as (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) from:",
                          "details": [
                            {
                              "value": 1,
                              "description": "termFreq=1.0",
                              "details": []
                            },
                            {
                              "value": 1.2,
                              "description": "parameter k1",
                              "details": []
                            },
                            {
                              "value": 0.75,
                              "description": "parameter b",
                              "details": []
                            },
                            {
                              "value": 9.224329,
                              "description": "avgFieldLength",
                              "details": []
                            },
                            {
                              "value": 7.111111,
                              "description": "fieldLength",
                              "details": []
                            }
                          ]
                        }
                      ]
                    }
                  ]
                },
                {
                  "value": 5.70897,
                  "description": "weight(name:克 in 6914) [PerFieldSimilarity], result of:",
                  "details": [
                    {
                      "value": 5.70897,
                      "description": "score(doc=6914,freq=1.0 = termFreq=1.0\n), product of:",
                      "details": [
                        {
                          "value": 5.173929,
                          "description": "idf, computed as log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",
                          "details": [
                            {
                              "value": 67,
                              "description": "docFreq",
                              "details": []
                            },
                            {
                              "value": 11920,
                              "description": "docCount",
                              "details": []
                            }
                          ]
                        },
                        {
                          "value": 1.103411,
                          "description": "tfNorm, computed as (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) from:",
                          "details": [
                            {
                              "value": 1,
                              "description": "termFreq=1.0",
                              "details": []
                            },
                            {
                              "value": 1.2,
                              "description": "parameter k1",
                              "details": []
                            },
                            {
                              "value": 0.75,
                              "description": "parameter b",
                              "details": []
                            },
                            {
                              "value": 9.224329,
                              "description": "avgFieldLength",
                              "details": []
                            },
                            {
                              "value": 7.111111,
                              "description": "fieldLength",
                              "details": []
                            }
                          ]
                        }
                      ]
                    }
                  ]
                }
              ]
            },
            {
              "value": 0,
              "description": "match on required clause, product of:",
              "details": [
                {
                  "value": 0,
                  "description": "# clause",
                  "details": []
                },
                {
                  "value": 1,
                  "description": "_type:shop, product of:",
                  "details": [
                    {
                      "value": 1,
                      "description": "boost",
                      "details": []
                    },
                    {
                      "value": 1,
                      "description": "queryNorm",
                      "details": []
                    }
                  ]
                }
              ]
            }
          ]
        }
      }
    ]
  }
}

詳細說明一下

一、在 "_shard": "[act_shop-2018.01.12][80]"這個分片裏,按照es的標準分詞,當match'星巴克'的時候,而後會分詞爲'星','巴','克'這三個詞。每一個詞的得分爲:

'星':4.7601295

'巴':5.0423846

'克':5.70897

總的得分:4.7601295+5.0423846+5.70897=15.511484

二、而後每一個詞是怎麼得分的,這裏詳細說一下,以'星'爲例:

sorce'星'=idf.tfNorm(也就是詞頻*逆向詞頻)

idf計算以下:

{
                      "value": 4.7601295,
                      "description": "score(doc=6914,freq=1.0 = termFreq=1.0\n), product of:",
                      "details": [
                        {
                          "value": 4.314013,
                          "description": "idf, computed as log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:",
                          "details": [
                            {
                              "value": 159,
                              "description": "docFreq",
                              "details": []
                            },
                            {
                              "value": 11920,
                              "description": "docCount",
                              "details": []
                            }
                          ]
                        }

docFreq:在這個分片裏,擊中'星'的文檔數量:159

docCount:在這個分片裏,包括總的文檔數量:11920

公式:log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5))=4.314013

tfNorm計算以下

tf能夠理解爲,這個'星',在某個文檔裏出現的次數的一些佔比

{
                          "value": 1.103411,
                          "description": "tfNorm, computed as (freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength)) from:",
                          "details": [
                            {
                              "value": 1,
                              "description": "termFreq=1.0",
                              "details": []
                            },
                            {
                              "value": 1.2,
                              "description": "parameter k1",
                              "details": []
                            },
                            {
                              "value": 0.75,
                              "description": "parameter b",
                              "details": []
                            },
                            {
                              "value": 9.224329,
                              "description": "avgFieldLength",
                              "details": []
                            },
                            {
                              "value": 7.111111,
                              "description": "fieldLength",
                              "details": []
                            }
                          ]
                        }

tfNorm=(freq * (k1 + 1)) / (freq + k1 * (1 - b + b * fieldLength / avgFieldLength))=1.103411

因此sorce'星'=idf.tfNorm=4.314013*1.103411=4.7601295

相關文章
相關標籤/搜索