MNIST(Mixed National Institute of Standards and Technology)http://yann.lecun.com/exdb/mnist/ ,入門級計算機視覺數據集,美國中學生手寫數字。訓練集6萬張圖片,測試集1萬張圖片。數字通過預處理、格式化,大小調整並居中,圖片尺寸固定28x28。數據集小,訓練速度快,收斂效果好。python
MNIST數據集,NIST數據集子集。4個文件。train-label-idx1-ubyte.gz 訓練集標記文件(28881字節),train-images-idx3-ubyte.gz 訓練集圖片文件(9912422字節),t10k-labels-idx1-ubyte.gz,測試集標記文件(4542字節),t10k-images-idx3-ubyte.gz 測試集圖片文件(1648877字節)。測試集,前5000個樣例取自原始NIST訓練集,後5000個取自原始NIST測試集。react
訓練集標記文件 train-labels-idx1-ubyt格式:offset、type、value、description。magic number(MSB first)、number of items、label。 MSB(most significant bit,最高有效位),二進制,MSB最高加權位。MSB位於二進制最左側,MSB first 最高有效位在前。 magic number 寫入ELF格式(Executable and Linkable Format)的ELF頭文件常量,檢查和本身設定是否一致判斷文件是否損壞。git
訓練集圖片文件 train-images-idx3-ubyte格式:magic number、number of images、number of rows、number of columns、pixel。 pixel(像素)取值範圍0-255,0-255表明背景色(白色),255表明前景色(黑色)。算法
測試集標記文件 t10k-labels-idx1-ubyte 格式:magic number(MSB first)、number of items、label。數組
測試集圖片文件 t10k-images-idx3-ubyte格式:magic number、number of images、number of rows、number of columns、pixel。瀏覽器
tensor flow-1.1.0/tensorflow/examples/tutorials/mnist。mnist_softmax.py 迴歸訓練,full_connected_feed.py Feed數據方式訓練,mnist_with_summaries.py 卷積神經網絡(CNN) 訓練過程可視化,mnist_softmax_xla.py XLA框架。服務器
MNIST分類問題。微信
Softmax迴歸解決兩種以上分類。Logistic迴歸模型在分類問題推廣。tensorflow-1.1.0/tensorflow/examples/tutorials/mnist/mnist_softmax.py。網絡
加載數據。導入input_data.py文件, tensorflow.contrib.learn.read_data_sets加載數據。FLAGS.data_dir MNIST路徑,可自定義。one_hot標記,長度爲n數組,只有一個元素是1.0,其餘元素是0.0。輸出層softmax,輸出機率分佈,要求輸入標記機率分佈形式,以更計算交叉熵。app
構建迴歸模型。輸入原始真實值(group truth),計算softmax函數擬合預測值,定義損失函數和優化器。用梯度降低算法以0.5學習率最小化交叉熵。tf.train.GradientDescentOptimizer。
訓練模型。初始化建立變量,會話啓動模型。模型循環訓練1000次,每次循環隨機抓取訓練數據100個數據點,替換佔位符。隨機訓練(stochastic training),SGD方法梯度降低,每次從訓練數據隨機抓取小部分數據梯度降低訓練。BGD每次對全部訓練數據計算。SGD學習數據集整體特徵,加速訓練過程。
評估模型。tf.argmax(y,1)返回模型對任一輸入x預測標記值,tf.argmax(y_,1) 正確標記值。tf.equal檢測預測值和真實值是否匹配,預測布爾值轉化浮點數,取平均值。
from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf FLAGS = None def main(_): # Import data 加載數據 mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True) # Create the model 定義迴歸模型 x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) y = tf.matmul(x, W) + b #預測值 # Define loss and optimizer 定義損失函數和優化器 y_ = tf.placeholder(tf.float32, [None, 10]) # 輸入真實值佔位符 # tf.nn.softmax_cross_entropy_with_logits計算預測值y與真實值y_差值,取平均值 cross_entropy = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)) # SGD優化器 train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) # InteractiveSession()建立交互式上下文TensorFlow會話,交互式會話會成爲默認會話,能夠運行操做(OP)方法(tf.Tensor.eval、tf.Operation.run) sess = tf.InteractiveSession() tf.global_variables_initializer().run() # Train 訓練模型 for _ in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) # Test trained model 評估訓練模型 correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 計算模型測試集準確率 print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--data_dir', type=str, default='/tmp/tensorflow/mnist/input_data', help='Directory for storing input data') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
訓練過程可視化。tensorflow-1.1.0/tensorflow/examples/tutorials/mnist/mnist_summaries.py 。 TensorBoard可視化,訓練過程,記錄結構化數據,支行本地服務器,監聽6006端口,瀏覽器請求頁面,分析記錄數據,繪製統計圖表,展現計算圖。 運行腳本:python mnist_with_summaries.py。 訓練過程數據存儲在/tmp/tensorflow/mnist目錄,可命令行參數--log_dir指定。運行tree命令,ipnut_data # 存放訓練數據,logs # 訓練結果日誌,train # 訓練集結果日誌。運行tensorboard命令,打開瀏覽器,查看訓練可視化結果,logdir參數標明日誌文件存儲路徑,命令 tensorboard --logdir=/tmp/tensorflow/mnist/logs/mnist_with_summaries 。建立摘要文件寫入符(FileWriter)指定。
# sess.graph 圖定義,圖可視化 file_writer = tf.summary.FileWriter('/tmp/tensorflow/mnist/logs/mnist_with_summaries', sess.graph)
瀏覽器打開服務地址,進入可視化操做界面。
可視化實現。
給一個張量添加多個摘要描述函數variable_summaries。SCALARS面板顯示每層均值、標準差、最大值、最小值。 構建網絡模型,weights、biases調用variable_summaries,每層採用tf.summary.histogram繪製張量激活函數先後變化。HISTOGRAMS面板顯示。 繪製準確率、交叉熵,SCALARS面板顯示。
from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import sys import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data FLAGS = None def train(): # Import data mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True, fake_data=FLAGS.fake_data) sess = tf.InteractiveSession() # Create a multilayer model. # Input placeholders with tf.name_scope('input'): x = tf.placeholder(tf.float32, [None, 784], name='x-input') y_ = tf.placeholder(tf.float32, [None, 10], name='y-input') with tf.name_scope('input_reshape'): image_shaped_input = tf.reshape(x, [-1, 28, 28, 1]) tf.summary.image('input', image_shaped_input, 10) # We can't initialize these variables to 0 - the network will get stuck. def weight_variable(shape): """Create a weight variable with appropriate initialization.""" initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): """Create a bias variable with appropriate initialization.""" initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def variable_summaries(var): """Attach a lot of summaries to a Tensor (for TensorBoard visualization).""" """對一個張量添加多個摘要描述""" with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean) # 均值 with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev', stddev) # 標準差 tf.summary.scalar('max', tf.reduce_max(var)) # 最大值 tf.summary.scalar('min', tf.reduce_min(var)) # 最小值 tf.summary.histogram('histogram', var) def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu): # Adding a name scope ensures logical grouping of the layers in the graph. # 確保計算圖中各層分組,每層添加name_scope with tf.name_scope(layer_name): # This Variable will hold the state of the weights for the layer with tf.name_scope('weights'): weights = weight_variable([input_dim, output_dim]) variable_summaries(weights) with tf.name_scope('biases'): biases = bias_variable([output_dim]) variable_summaries(biases) with tf.name_scope('Wx_plus_b'): preactivate = tf.matmul(input_tensor, weights) + biases tf.summary.histogram('pre_activations', preactivate) # 激活前直方圖 activations = act(preactivate, name='activation') tf.summary.histogram('activations', activations) # 激活後直方圖 return activations hidden1 = nn_layer(x, 784, 500, 'layer1') with tf.name_scope('dropout'): keep_prob = tf.placeholder(tf.float32) tf.summary.scalar('dropout_keep_probability', keep_prob) dropped = tf.nn.dropout(hidden1, keep_prob) # Do not apply softmax activation yet, see below. y = nn_layer(dropped, 500, 10, 'layer2', act=tf.identity) with tf.name_scope('cross_entropy'): diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y) with tf.name_scope('total'): cross_entropy = tf.reduce_mean(diff) tf.summary.scalar('cross_entropy', cross_entropy) # 交叉熵 with tf.name_scope('train'): train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize( cross_entropy) with tf.name_scope('accuracy'): with tf.name_scope('correct_prediction'): correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) with tf.name_scope('accuracy'): accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.summary.scalar('accuracy', accuracy) # 準確率 # Merge all the summaries and write them out to # /tmp/tensorflow/mnist/logs/mnist_with_summaries (by default) merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph) test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test') tf.global_variables_initializer().run() def feed_dict(train): """Make a TensorFlow feed_dict: maps data onto Tensor placeholders.""" if train or FLAGS.fake_data: xs, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data) k = FLAGS.dropout else: xs, ys = mnist.test.images, mnist.test.labels k = 1.0 return {x: xs, y_: ys, keep_prob: k} for i in range(FLAGS.max_steps): if i % 10 == 0: # Record summaries and test-set accuracy summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False)) test_writer.add_summary(summary, i) print('Accuracy at step %s: %s' % (i, acc)) else: # Record train set summaries, and train if i % 100 == 99: # Record execution stats run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True), options=run_options, run_metadata=run_metadata) train_writer.add_run_metadata(run_metadata, 'step%03d' % i) train_writer.add_summary(summary, i) print('Adding run metadata for', i) else: # Record a summary summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True)) train_writer.add_summary(summary, i) train_writer.close() test_writer.close() def main(_): if tf.gfile.Exists(FLAGS.log_dir): tf.gfile.DeleteRecursively(FLAGS.log_dir) tf.gfile.MakeDirs(FLAGS.log_dir) train() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--fake_data', nargs='?', const=True, type=bool, default=False, help='If true, uses fake data for unit testing.') parser.add_argument('--max_steps', type=int, default=1000, help='Number of steps to run trainer.') parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate') parser.add_argument('--dropout', type=float, default=0.9, help='Keep probability for training dropout.') parser.add_argument( '--data_dir', type=str, default=os.path.join(os.getenv('TEST_TMPDIR', '/tmp'), 'tensorflow/mnist/input_data'), help='Directory for storing input data') parser.add_argument( '--log_dir', type=str, default=os.path.join(os.getenv('TEST_TMPDIR', '/tmp'), 'tensorflow/mnist/logs/mnist_with_summaries'), help='Summaries log directory') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
參考資料: 《TensorFlow技術解析與實戰》
歡迎推薦上海機器學習工做機會,個人微信:qingxingfengzi