MySQL分頁查詢做爲Java面試的一道高頻面試題,這裏有必要實踐一下,畢竟實踐出真知。 不少同窗在作測試時苦於沒有海量數據,官方實際上是有一套測試庫的。mysql
這裏模擬數據分2種狀況導入,若是隻是須要數據測試下,那麼推薦官方數據。若是官方數據知足不了需求的話,那麼咱們本身模擬數據。git
下載 官方數據庫文件 或者在 github 上下載。github
該測試庫含有6個表。面試
首先進入 employees_db
, 執行導入數據指令sql
mysql -uroot -proot -t < employees.sql
複製代碼
有些環境可能會報錯數據庫
ERROR 1193 (HY000) at line 38: Unknown system variable 'storage_engine' 複製代碼
鏈接mysql查看默認引擎,發現不是本地環境的問題。緩存
mysql> show variables like '%engine%';
+----------------------------------+--------+
| Variable_name | Value |
+----------------------------------+--------+
| default_storage_engine | InnoDB |
| default_tmp_storage_engine | InnoDB |
| disabled_storage_engines | |
| internal_tmp_disk_storage_engine | InnoDB |
+----------------------------------+--------+
4 rows in set (0.01 sec)
複製代碼
修改 employees.sql
腳本bash
set default_storage_engine = InnoDB;
-- set storage_engine = MyISAM;
-- set storage_engine = Falcon;
-- set storage_engine = PBXT;
-- set storage_engine = Maria;
select CONCAT('storage engine: ', @@default_storage_engine) as INFO;
複製代碼
再次執行發現導入成功微信
➜ employees_db mysql -uroot -proot -t < employees.sql mysql: [Warning] Using a password on the command line interface can be insecure. +-----------------------------+ | INFO | +-----------------------------+ | CREATING DATABASE STRUCTURE | +-----------------------------+ +------------------------+ | INFO | +------------------------+ | storage engine: InnoDB | +------------------------+ +---------------------+ | INFO | +---------------------+ | LOADING departments | +---------------------+ +-------------------+ | INFO | +-------------------+ | LOADING employees | +-------------------+ +------------------+ | INFO | +------------------+ | LOADING dept_emp | +------------------+ +----------------------+ | INFO | +----------------------+ | LOADING dept_manager | +----------------------+ +----------------+ | INFO | +----------------+ | LOADING titles | +----------------+ +------------------+ | INFO | +------------------+ | LOADING salaries | +------------------+ 複製代碼
驗證結果(配置修改同上)markdown
➜ employees_db mysql -uroot -proot -t < test_employees_sha.sql
mysql: [Warning] Using a password on the command line interface can be insecure.
+----------------------+
| INFO |
+----------------------+
| TESTING INSTALLATION |
+----------------------+
+--------------+------------------+------------------------------------------+
| table_name | expected_records | expected_crc |
+--------------+------------------+------------------------------------------+
| departments | 9 | 4b315afa0e35ca6649df897b958345bcb3d2b764 |
| dept_emp | 331603 | d95ab9fe07df0865f592574b3b33b9c741d9fd1b |
| dept_manager | 24 | 9687a7d6f93ca8847388a42a6d8d93982a841c6c |
| employees | 300024 | 4d4aa689914d8fd41db7e45c2168e7dcb9697359 |
| salaries | 2844047 | b5a1785c27d75e33a4173aaa22ccf41ebd7d4a9f |
| titles | 443308 | d12d5f746b88f07e69b9e36675b6067abb01b60e |
+--------------+------------------+------------------------------------------+
複製代碼
咱們能夠看到emp大概有33萬條數據。
這裏咱們能夠選擇存儲過程批量導入。
首先建立一張表
drop table if exists `user`;
create table `user`(
`id` int unsigned auto_increment,
`username` varchar(64) not null default '',
`score` int(11) not null default 0,
primary key(`id`)
)ENGINE = InnoDB;
複製代碼
建立存儲過程
DROP PROCEDURE IF EXISTS batchInsert;
delimiter ? -- 聲明存儲過程結束符號
create procedure batchInsert() -- 建立存儲過程
begin -- 存儲過程主體開始
declare num int; -- 聲明變量
set num=1; -- 初始值
while num<=3000000 do -- 循環條件
insert into user(`username`,`score`) values(concat('user-', num),num); -- 執行語句
set num=num+1; -- 循環變量自增
end while; -- 結束循環
end? -- 存儲過程主體結束
delimiter ; #恢復;表示結束
CALL batchInsert; -- 執行存儲過程
複製代碼
能夠看到測試300W條數據大概1046s插入完成。好吧,原本計劃導入1000w的結果時間太長了。
咱們拿現有的表 user
進行測試,該表有 300w 條數據。
首先查看下該表結構以及目前存在哪些索引
mysql> desc user;
+----------+------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------+------------------+------+-----+---------+----------------+
| id | int(10) unsigned | NO | PRI | NULL | auto_increment |
| username | varchar(30) | NO | | | |
| score | int(11) | NO | | 0 | |
+----------+------------------+------+-----+---------+----------------+
3 rows in set (0.00 sec)
mysql> show index from user;
+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| user | 0 | PRIMARY | 1 | id | A | 2991886 | NULL | NULL | | BTREE | | |
+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
1 row in set (0.00 sec)
複製代碼
能夠看到只有 id
主鍵索引。
其次查看是否開啓 緩存
(避免查詢緩存對執行效率產生影響)
mysql> show variables like '%query_cache%';
+------------------------------+---------+
| Variable_name | Value |
+------------------------------+---------+
| have_query_cache | YES |
| query_cache_limit | 1048576 |
| query_cache_min_res_unit | 4096 |
| query_cache_size | 1048576 |
| query_cache_type | OFF |
| query_cache_wlock_invalidate | OFF |
+------------------------------+---------+
6 rows in set (0.00 sec)
mysql> show profiles;
Empty set, 1 warning (0.00 sec)
複製代碼
have_query_cache
和 query_cache_type
說明支持緩存但並未開啓。 show profiles
顯示爲空,說明profiles功能是關閉的。
開啓 profiles
mysql> SET profiling = 1;
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> show profiles;
+----------+------------+-------------------+
| Query_ID | Duration | Query |
+----------+------------+-------------------+
| 1 | 0.00012300 | SET profiling = 1 |
+----------+------------+-------------------+
1 row in set, 1 warning (0.00 sec)
複製代碼
通常咱們最經常使用的分頁查詢的方式爲 order by
+ limit m,n
的方式, 如今咱們測試下分頁性能
select * from user order by score limit 0,10; -- 10 rows in set (0.65 sec)
select * from user order by score limit 10000,10; -- 10 rows in set (0.83 sec)
select * from user order by score limit 100000,10; -- 10 rows in set (1.03 sec)
select * from user order by score limit 1000000,10; -- 10 rows in set (1.14 sec)
複製代碼
這裏咱們確認下是否用到了索引
mysql> explain select * from user order by score limit 1000000,10;
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+----------------+
| 1 | SIMPLE | user | NULL | ALL | NULL | NULL | NULL | NULL | 2991995 | 100.00 | Using filesort |
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+----------------+
1 row in set, 1 warning (0.00 sec)
複製代碼
能夠看到確實沒有用到索引,全表掃描100W數據分頁大概須要1.14s的時間。
select * from user order by id limit 10000,10; -- 10 rows in set (0.01 sec)
select * from user order by id limit 1000000,10; -- 10 rows in set (0.18 sec)
select * from user order by id limit 2000000,10; -- 10 rows in set (0.35 sec)
複製代碼
該查詢用到了主鍵索引,因此查詢效率比較高。 能夠看到,當數據量變大時,查詢效率明顯降低。
這裏咱們確認下是否使用到了索引
mysql> explain select * from user order by id limit 2000000,10;
+----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------+
| 1 | SIMPLE | user | NULL | index | NULL | PRIMARY | 4 | NULL | 2000010 | 100.00 | NULL |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------+
1 row in set, 1 warning (0.00 sec)
複製代碼
能夠看到用了全索引掃描,共查詢了2000010行數據。
咱們根據MYSQL自帶的一種query診斷分析工具查看下sql語句執行各個操做的耗時詳情。能夠看到查詢獲取到的2000010條記錄都返回給客戶端了,耗時主要集中在Sending data階段。可是客戶端只須要10條數據,咱們可否只給客戶端返回10條數據呢?
mysql> show profiles;
+----------+------------+---------------------------------------------------------+
| Query_ID | Duration | Query |
+----------+------------+---------------------------------------------------------+
| 1 | 0.00012300 | SET profiling = 1 |
| 2 | 0.00009200 | SET profiling = 1 |
| 3 | 0.35689500 | select * from user order by id limit 2000000,10 |
| 4 | 0.00023900 | explain select * from user order by id limit 2000000,10 |
+----------+------------+---------------------------------------------------------+
4 rows in set, 1 warning (0.00 sec)
mysql> show profile for query 3;
+----------------------+----------+
| Status | Duration |
+----------------------+----------+
| starting | 0.000071 |
| checking permissions | 0.000007 |
| Opening tables | 0.000012 |
| init | 0.000017 |
| System lock | 0.000008 |
| optimizing | 0.000005 |
| statistics | 0.000024 |
| preparing | 0.000016 |
| Sorting result | 0.000004 |
| executing | 0.000003 |
| Sending data | 0.356653 |
| end | 0.000013 |
| query end | 0.000005 |
| closing tables | 0.000008 |
| freeing items | 0.000019 |
| cleaning up | 0.000030 |
+----------------------+----------+
16 rows in set, 1 warning (0.00 sec)
複製代碼
網上的優化方案: 子查詢 + 覆蓋索引
mysql> select * from user where id > (select id from user order by id limit 2000000, 1) limit 10;
+---------+--------------+---------+
| id | username | score |
+---------+--------------+---------+
| 2000002 | user-2000002 | 2000002 |
| 2000003 | user-2000003 | 2000003 |
| 2000004 | user-2000004 | 2000004 |
| 2000005 | user-2000005 | 2000005 |
| 2000006 | user-2000006 | 2000006 |
| 2000007 | user-2000007 | 2000007 |
| 2000008 | user-2000008 | 2000008 |
| 2000009 | user-2000009 | 2000009 |
| 2000010 | user-2000010 | 2000010 |
| 2000011 | user-2000011 | 2000011 |
+---------+--------------+---------+
10 rows in set (0.29 sec)
mysql> explain select * from user where id > (select id from user order by id limit 2000000, 1) limit 10;
+----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------------+
| 1 | PRIMARY | user | NULL | range | PRIMARY | PRIMARY | 4 | NULL | 1495997 | 100.00 | Using where |
| 2 | SUBQUERY | user | NULL | index | NULL | PRIMARY | 4 | NULL | 2000001 | 100.00 | Using index |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------------+
2 rows in set, 1 warning (0.30 sec)
複製代碼
然而並無提高查詢性能。沒看到問題出在哪裏呢?從執行計劃能夠看出,索引和咱們指望是一致的。rows這裏檢索了不少行。單獨看下子查詢
mysql> select id from user order by id limit 2000000, 1;
+---------+
| id |
+---------+
| 2000001 |
+---------+
1 row in set (0.29 sec)
mysql> explain select id from user order by id limit 2000000, 1;
+----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------------+
| 1 | SIMPLE | user | NULL | index | NULL | PRIMARY | 4 | NULL | 2000001 | 100.00 | Using index |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------------+
1 row in set, 1 warning (0.00 sec)
複製代碼
這裏能夠看出子查詢即便走了覆蓋索引,依舊消耗3s左右,我以爲這就是正常的索引IO花費的時間。沒找到官方測試數據作對比,以及MySQL一次IO查詢花費的時間來作對比。
理論上int主鍵一頁能夠存儲1000個鍵,根常駐內存,那麼B+Tree第二層大概100W個鍵,測試數據在200W的分頁,理論上須要2次IO能夠找到數據。2次IO花費的時間是3s的話,1次應該在1.5s左右, 咱們查詢下99W左右的分頁看是否符合假想。
mysql> select id from user order by id limit 990000,1;
+--------+
| id |
+--------+
| 990001 |
+--------+
1 row in set (0.15 sec)
複製代碼
因此這裏筆者大膽的猜測結果是正常開銷
原本想覆盤網上的分頁優化方案是否可靠,可是預期結果仍是有區別。但願聰明的讀者有不一樣看法的不吝賜教。公衆號裏有筆者的微信二維碼。