一、rdd持久化html
二、廣播java
三、累加器node
一、rdd持久化python
經過spark-shell,能夠快速的驗證咱們的想法和操做!程序員
啓動hdfs集羣web
spark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ sbin/start-dfs.sh算法
啓動spark集羣spring
spark@SparkSingleNode:/usr/local/spark/spark-1.5.2-bin-hadoop2.6$ sbin/start-all.shshell
啓動spark-shellexpress
spark@SparkSingleNode:/usr/local/spark/spark-1.5.2-bin-hadoop2.6/bin$ ./spark-shell --master spark://SparkSingleNode:7077 --executor-memory 1g
reduce
scala> sc
res0: org.apache.spark.SparkContext = org.apache.spark.SparkContext@3bcc8f13
scala> val numbers = sc.parallelize
<console>:21: error: missing arguments for method parallelize in class SparkContext;
follow this method with `_' if you want to treat it as a partially applied function
val numbers = sc.parallelize
^
scala> val numbers = sc.parallelize(1 to 100)
numbers: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:21
scala> numbers.reduce(_+_)
took 11.790246 s
res1: Int = 5050
可見,reduce是個action。
scala> val result = numbers.map(2*_)
result: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[1] at map at <console>:23
scala> val data = result.collect
reduce源碼
/**
* Reduces the elements of this RDD using the specified commutative and
* associative binary operator.
*/
def reduce(f: (T, T) => T): T = withScope {
val cleanF = sc.clean(f)
val reducePartition: Iterator[T] => Option[T] = iter => {
if (iter.hasNext) {
Some(iter.reduceLeft(cleanF))
} else {
None
}
}
var jobResult: Option[T] = None
val mergeResult = (index: Int, taskResult: Option[T]) => {
if (taskResult.isDefined) {
jobResult = jobResult match {
case Some(value) => Some(f(value, taskResult.get))
case None => taskResult
}
}
}
sc.runJob(this, reducePartition, mergeResult)
// Get the final result out of our Option, or throw an exception if the RDD was empty
jobResult.getOrElse(throw new UnsupportedOperationException("empty collection"))
}
可見,這也是一個action操做。
collect
data: Array[Int] = Array(2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200)
scala>
collect源碼
/**
* Return an array that contains all of the elements in this RDD.
*/
def collect(): Array[T] = withScope {
val results = sc.runJob(this, (iter: Iterator[T]) => iter.toArray)
Array.concat(results: _*)
}
可見,這也是一個action操做。
從收集結果的角度來講,若是想要在命令行終端中,看到執行結果,就必須collect。
從源碼的角度來講,凡是action級別的操做,都會觸發sc.rubJob。這點,spark裏是一個應用程序容許有多個Job,而hadoop裏一個應用程序只能一個Job。
count
scala> numbers
res2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:21
scala> 1 to 100
res3: scala.collection.immutable.Range.Inclusive = Range(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100)
scala> numbers.count
took 0.649005 s
res4: Long = 100
count源碼
/**
* Return the number of elements in the RDD.
*/
def count(): Long = sc.runJob(this, Utils.getIteratorSize _).sum
可見,這也是一個action操做。
take
scala> val topN = numbers.take(5)
topN: Array[Int] = Array(1, 2, 3, 4, 5)
take源碼
/**
* Take the first num elements of the RDD. It works by first scanning one partition, and use the
* results from that partition to estimate the number of additional partitions needed to satisfy
* the limit.
*
* @note due to complications in the internal implementation, this method will raise
* an exception if called on an RDD of `Nothing` or `Null`.
*/
def take(num: Int): Array[T] = withScope {
if (num == 0) {
new Array[T](0)
} else {
val buf = new ArrayBuffer[T]
val totalParts = this.partitions.length
var partsScanned = 0
while (buf.size < num && partsScanned < totalParts) {
// The number of partitions to try in this iteration. It is ok for this number to be
// greater than totalParts because we actually cap it at totalParts in runJob.
var numPartsToTry = 1
if (partsScanned > 0) {
// If we didn't find any rows after the previous iteration, quadruple and retry.
// Otherwise, interpolate the number of partitions we need to try, but overestimate
// it by 50%. We also cap the estimation in the end.
if (buf.size == 0) {
numPartsToTry = partsScanned * 4
} else {
// the left side of max is >=1 whenever partsScanned >= 2
numPartsToTry = Math.max((1.5 * num * partsScanned / buf.size).toInt - partsScanned, 1)
numPartsToTry = Math.min(numPartsToTry, partsScanned * 4)
}
}
val left = num - buf.size
val p = partsScanned until math.min(partsScanned + numPartsToTry, totalParts)
val res = sc.runJob(this, (it: Iterator[T]) => it.take(left).toArray, p)
res.foreach(buf ++= _.take(num - buf.size))
partsScanned += numPartsToTry
}
buf.toArray
}
}
可見,這也是一個action操做。
countByKey
scala> val scores = Array(Tuple2(1,100),Tuple2(1,100),Tuple2(2,100),Tuple2(2,100),Tuple2(3,100))
scores: Array[(Int, Int)] = Array((1,100), (1,100), (2,100), (2,100), (3,100))
scala> val content = sc.parallelize
<console>:21: error: missing arguments for method parallelize in class SparkContext;
follow this method with `_' if you want to treat it as a partially applied function
val content = sc.parallelize
^
scala> val content = sc.parallelize(scores)
content: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[0] at parallelize at <console>:23
scala> val data = content.countByKey()
took 10.556634 s
data: scala.collection.Map[Int,Long] = Map(2 -> 2, 1 -> 2, 3 -> 1)
countByKey源碼
/**
* Count the number of elements for each key, collecting the results to a local Map.
*
* Note that this method should only be used if the resulting map is expected to be small, as
* the whole thing is loaded into the driver's memory.
* To handle very large results, consider using rdd.mapValues(_ => 1L).reduceByKey(_ + _), which
* returns an RDD[T, Long] instead of a map.
*/
def countByKey(): Map[K, Long] = self.withScope {
self.mapValues(_ => 1L).reduceByKey(_ + _).collect().toMap
}
可見,這也是一個action操做。
saveAsTextFile
以前,在 rdd實戰(rdd基本操做實戰及transformation和action流程圖)(源碼)
scala> val partitionsReadmeRdd = sc.textFile("hdfs://SparkSingleNode:9000/README.md").flatMap(_.split(" ")).map(word =>(word,1)).reduceByKey(_+_,1).saveAsTextFile("~/partition1README.txt")
這裏呢。
scala> val partitionsReadmeRdd = sc.textFile("/README.md").flatMap(_.split(" ")).map(word =>(word,1)).reduceByKey(_+_,1).saveAsTextFile("/partition1README.txt")
scala> val partitionsReadmeRdd = sc.textFile("/README.md").flatMap(_.split(" ")).map(word =>(word,1)).reduceByKey(_+_,1).saveAsTextFile("/partition1README.txt")
saveAsTextFile源碼
/**
* Save this RDD as a text file, using string representations of elements.
*/
def saveAsTextFile(path: String): Unit = withScope {
// https://issues.apache.org/jira/browse/SPARK-2075
//
// NullWritable is a `Comparable` in Hadoop 1.+, so the compiler cannot find an implicit
// Ordering for it and will use the default `null`. However, it's a `Comparable[NullWritable]`
// in Hadoop 2.+, so the compiler will call the implicit `Ordering.ordered` method to create an
// Ordering for `NullWritable`. That's why the compiler will generate different anonymous
// classes for `saveAsTextFile` in Hadoop 1.+ and Hadoop 2.+.
//
// Therefore, here we provide an explicit Ordering `null` to make sure the compiler generate
// same bytecodes for `saveAsTextFile`.
val nullWritableClassTag = implicitly[ClassTag[NullWritable]]
val textClassTag = implicitly[ClassTag[Text]]
val r = this.mapPartitions { iter =>
val text = new Text()
iter.map { x =>
text.set(x.toString)
(NullWritable.get(), text)
}
}
RDD.rddToPairRDDFunctions(r)(nullWritableClassTag, textClassTag, null)
.saveAsHadoopFile[TextOutputFormat[NullWritable, Text]](path)
}
/**
* Save this RDD as a compressed text file, using string representations of elements.
*/
def saveAsTextFile(path: String, codec: Class[_ <: CompressionCodec]): Unit = withScope {
// https://issues.apache.org/jira/browse/SPARK-2075
val nullWritableClassTag = implicitly[ClassTag[NullWritable]]
val textClassTag = implicitly[ClassTag[Text]]
val r = this.mapPartitions { iter =>
val text = new Text()
iter.map { x =>
text.set(x.toString)
(NullWritable.get(), text)
}
}
RDD.rddToPairRDDFunctions(r)(nullWritableClassTag, textClassTag, null)
.saveAsHadoopFile[TextOutputFormat[NullWritable, Text]](path, codec)
}
saveAsTextFile不只,可保存在集羣裏,也能夠保存到本地,這就要看hadoop的運行模式。
因而可知,它也是個action操做。
以上是rdd持久化的第一個方面,就是action級別的操做。
rdd持久化的第二個方面,就是經過persist。
爲何在spark裏,隨處可見persist的身影呢?
緣由一:spark在默認狀況下,數據是放在內存中,適合高速迭代。好比在一個stage裏,有1000個步驟,它其實只在第1個步驟輸入數據,在第1000個步驟輸出數據,在中間不產生臨時數據。可是,分佈式系統,分享很是高,因此,容出錯,設計到容錯。
因爲,rdd是有血統繼承關係的,即lineager。若是後面的rdd數據分片出錯了或rdd自己出錯了,則,可根據其前面依賴的lineager,算出來。
可是,假設1000個步驟,若是以前,沒有父rdd進行persist或cache的話,則要重頭開始了。親!
何時,該persist?
一、在某個步驟很是費時的狀況下,很差使 (手動)
二、計算鏈條特別長的狀況下 (手動)
三、checkpoint所在的rdd也必定要持久化數據 (注意:在checkpoint以前,進行persist) (手動)
checkpoint是rdd的算子,
先寫,某個具體rdd.checkpoint 或 某個具體rdd.cache ,再寫, 某個具體rdd.persist
四、shuffle以後 (由於shuffle以後,要網絡傳輸,風險大) (手動)
五、shuffle以前 (框架,默認給咱們作的,把數據持久化到本地磁盤)
checkpoint源碼
/**
* Mark this RDD for checkpointing. It will be saved to a file inside the checkpoint
* directory set with `SparkContext#setCheckpointDir` and all references to its parent
* RDDs will be removed. This function must be called before any job has been
* executed on this RDD. It is strongly recommended that this RDD is persisted in
* memory, otherwise saving it on a file will require recomputation.
*/
def checkpoint(): Unit = RDDCheckpointData.synchronized {
// NOTE: we use a global lock here due to complexities downstream with ensuring
// children RDD partitions point to the correct parent partitions. In the future
// we should revisit this consideration.
if (context.checkpointDir.isEmpty) {
throw new SparkException("Checkpoint directory has not been set in the SparkContext")
} else if (checkpointData.isEmpty) {
checkpointData = Some(new ReliableRDDCheckpointData(this))
}
}
persist源碼
/**
* Mark this RDD for persisting using the specified level.
*
* @param newLevel the target storage level
* @param allowOverride whether to override any existing level with the new one
*/
private def persist(newLevel: StorageLevel, allowOverride: Boolean): this.type = {
// TODO: Handle changes of StorageLevel
if (storageLevel != StorageLevel.NONE && newLevel != storageLevel && !allowOverride) {
throw new UnsupportedOperationException(
"Cannot change storage level of an RDD after it was already assigned a level")
}
// If this is the first time this RDD is marked for persisting, register it
// with the SparkContext for cleanups and accounting. Do this only once.
if (storageLevel == StorageLevel.NONE) {
sc.cleaner.foreach(_.registerRDDForCleanup(this))
sc.persistRDD(this)
}
storageLevel = newLevel
this
}
/**
* Set this RDD's storage level to persist its values across operations after the first time
* it is computed. This can only be used to assign a new storage level if the RDD does not
* have a storage level set yet. Local checkpointing is an exception.
*/
def persist(newLevel: StorageLevel): this.type = {
if (isLocallyCheckpointed) {
// This means the user previously called localCheckpoint(), which should have already
// marked this RDD for persisting. Here we should override the old storage level with
// one that is explicitly requested by the user (after adapting it to use disk).
persist(LocalRDDCheckpointData.transformStorageLevel(newLevel), allowOverride = true)
} else {
persist(newLevel, allowOverride = false)
}
}
/** Persist this RDD with the default storage level (`MEMORY_ONLY`). */
def persist(): this.type = persist(StorageLevel.MEMORY_ONLY)
/** Persist this RDD with the default storage level (`MEMORY_ONLY`). */
def cache(): this.type = persist()
StorageLevel裏有不少類型
這裏,牽扯到序列化。
問,爲何要序列化?
答:節省空間,減小體積。內存不夠時,把MEMORY中的數據,進行序列化。
固然,也有很差一面,序列化時,會反序列化,反序列化耗cpu。
MEMORY_AND_DISK
假設,咱們制定數據存儲方式是,MEMORY_AND_DISK。則,是否是同時,存儲到內存和磁盤呢?
答:不是啊,親。spark必定是優先考慮內存的啊,只要內存足夠,不會考慮磁盤。若內存不夠了,則才放部分數據到磁盤。
極大地減小數據丟失機率發生。
MEMORY_ONLY
假設,咱們制定數據存儲方式是,MEMORY_ONLY。則,只放到內存。當內存不夠了,會出現OOM。或數據丟失。
OFF_HEAP
這牽扯到Tachyon,基於內存的分佈式系統
爲何有2分副本?好處是?
假設,一個計算特別耗時,並且,又是基於內存,若是其中一份副本崩潰掉,則可迅速切換到另外一份副本去計算。這就是「空間換時間」!很是重要
這不是並行計算,這是計算後的結果,放2份副本。
scala> val partitionsReadmeRdd = sc.textFile("/README.md").flatMap(_.split(" ")).map(word =>(word,1)).reduceByKey(_+_,1).count
took 6.270138 s
scala> val partitionsReadmeRdd = sc.textFile("/README.md").flatMap(_.split(" ")).map(word =>(word,1)).reduceByKey(_+_,1).cache.count
took 4.147545 s
scala> val partitionsReadmeRdd = sc.textFile("/README.md").flatMap(_.split(" ")).map(word =>(word,1)).reduceByKey(_+_,1).cache.count
took 4.914212 s
scala> val cacheRdd = sc.textFile("/README.md").flatMap(_.split(" ")).map(word =>(word,1)).reduceByKey(_+_,1).cache
scala> cacheRdd.count
took 3.371621
scala> val cacheRdd = sc.textFile("/README.md").flatMap(_.split(" ")).map(word =>(word,1)).reduceByKey(_+_,1).cache
scala> cacheRdd.count
took 0.943499 s
個人天啊!
scala> sc.textFile("/README.md").flatMap(_.split(" ")).map(word =>(word,1)).reduceByKey(_+_,1).cache.count
took 5.603903
scala> sc.textFile("/README.md").flatMap(_.split(" ")).map(word =>(word,1)).reduceByKey(_+_,1).cache.count
took 4.146627
scala> sc.textFile("/README.md").flatMap(_.split(" ")).map(word =>(word,1)).reduceByKey(_+_,1).cache.count
took 3.071122
cache以後,必定不能當即有其餘算子!
實際工程中, cache以後,若是有其餘算子,則會,從新觸發這個工做過程。
注意:cache,不是action
cache緩存,怎麼讓它失效?
答:unpersist
persist是lazy級別的,unpersist是eager級別的。cache是persist的一個特殊狀況。
cache和persist的區別?
答:persist能夠放到磁盤、放到內存、同時放到內存和磁盤。以及多份副本
cache只能放到內存,以及只能一份副本。
persisit在內存不夠時,保存在磁盤的哪一個目錄?
答:local的process。
好的,以上是,rdd持久化的兩個方面。
rdd持久化的第一個方面,就是經常使用的action級別的操做。
rdd持久化的第二個方面,就是持久化的不一樣方式,以及它內部的運行狀況
小知識:cache以後,必定不能當即有其餘算子!實際工程中, cache以後,若是有其餘算子,則會,從新觸發這個工做過程。
通常都不會跨機器抓內存,寧願排隊。寧願數據不動代碼動。
二、廣播
爲何要有,rdd廣播?
答:大變量、join、冗餘、減小數據移動、通訊、狀態、集羣消息、共享、網絡傳輸慢要提早、數據量大耗網絡、減小通訊、要同步。
爲何大變量,須要廣播呢?
答:緣由是,每一個task運行,讀取全集數據時,task自己執行時,每次都要拷貝一份數據副本,若是變量比較大,如一百萬,則要拷貝一百萬。
廣播變量容許程序員將一個只讀的變量緩存在每臺機器上,而不用在任務之間傳遞變量。廣播變量可被用於有效地給每一個節點一個大輸入數據集的副本。Spark還嘗試使用高效地廣播算法來分發變量,進而減小通訊的開銷。
Spark的動做經過一系列的步驟執行,這些步驟由分佈式的洗牌操做分開。Spark自動地廣播每一個步驟每一個任務須要的通用數據。這些廣播數據被序列化地緩存,在運行任務以前被反序列化出來。這意味着當咱們須要在多個階段的任務之間使用相同的數據,或者以反序列化形式緩存數據是十分重要的時候,顯式地建立廣播變量纔有用。
(本段摘自:http://blog.csdn.net/happyanger6/article/details/46576831)
廣播工做機制圖
廣播工做機制圖
參考: http://blog.csdn.net/kxr0502/article/details/50574561
問:讀廣播,會消耗網絡傳輸嗎?
答:不消耗,廣播是放在內存中。讀取它,不消耗。
問:廣播變量是否是就是向每個executor,廣播一份數據,而不是向每個task,廣播一份數據?這樣對嗎?
答:對
廣播是由Driver發給當前Application分配的全部Executor內存級別的全局只讀變量,Executor中的線程池中的線程共享該全局變量,極大的減小了網絡傳輸(不然的話每一個Task都要傳輸一次該變量)並極大的節省了內存,固然也隱形的提升的CPU的有效工做。
實戰建立廣播:
scala> val number = 10
number: Int = 10
scala> val broadcastNumber = sc.broadcast(number)
16/09/29 17:26:47 INFO storage.MemoryStore: ensureFreeSpace(40) called with curMem=1782734, maxMem=560497950
16/09/29 17:26:47 INFO storage.MemoryStore: Block broadcast_38 stored as values in memory (estimated size 40.0 B, free 532.8 MB)
16/09/29 17:26:48 INFO storage.MemoryStore: ensureFreeSpace(97) called with curMem=1782774, maxMem=560497950
16/09/29 17:26:48 INFO storage.MemoryStore: Block broadcast_38_piece0 stored as bytes in memory (estimated size 97.0 B, free 532.8 MB)
16/09/29 17:26:48 INFO storage.BlockManagerInfo: Added broadcast_38_piece0 in memory on 192.168.80.128:40914 (size: 97.0 B, free: 534.4 MB)
16/09/29 17:26:48 INFO spark.SparkContext: Created broadcast 38 from broadcast at <console>:23
broadcastNumber: org.apache.spark.broadcast.Broadcast[Int] = Broadcast(38)
scala> val data = sc.parallelize
<console>:21: error: missing arguments for method parallelize in class SparkContext;
follow this method with `_' if you want to treat it as a partially applied function
val data = sc.parallelize
^
scala> val data = sc.parallelize(1 to 100)
data: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[61] at parallelize at <console>:21
scala> val bn = data.map(_* broadcastNumber.value)
bn: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[62] at map at <console>:27
scala>
咱們知道,是test是要廣播變量,但,咱們編程,對rdd。
//經過在一個變量v上調用SparkContext.broadcast(v)能夠建立廣播變量。廣播變量是圍繞着v的封裝,能夠經過value方法訪問這個變量。
問:廣播變量裏有不少變量嗎?
答:固然能夠有不少,用java bin或scala封裝,就能夠了。
如,在這裏。廣播變量是,broadcastNumber, 裏,有變量value等。
scala> val broadcastNumber = sc.broadcast(number)
scala> val bn = data.map(_* broadcastNumber.value)
scala> bn.collect
res12: Array[Int] = Array(10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710, 720, 730, 740, 750, 760, 770, 780, 790, 800, 810, 820, 830, 840, 850, 860, 870, 880, 890, 900, 910, 920, 930, 940, 950, 960, 970, 980, 990, 1000)
scala>
由此,可見,經過機制、流程圖和實戰,深度剖析對廣播全面詳解!
broadcast源碼分析
參考: http://www.cnblogs.com/seaspring/p/5682053.html
BroadcastManager源碼
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.broadcast
import java.util.concurrent.atomic.AtomicLong
import scala.reflect.ClassTag
import org.apache.spark._
import org.apache.spark.util.Utils
private[spark] class BroadcastManager(
val isDriver: Boolean,
conf: SparkConf,
securityManager: SecurityManager)
extends Logging {
private var initialized = false
private var broadcastFactory: BroadcastFactory = null
initialize()
// Called by SparkContext or Executor before using Broadcast
private def initialize() {
synchronized {
if (!initialized) {
val broadcastFactoryClass =
conf.get("spark.broadcast.factory", "org.apache.spark.broadcast.TorrentBroadcastFactory")
broadcastFactory =
Utils.classForName(broadcastFactoryClass).newInstance.asInstanceOf[BroadcastFactory]
// Initialize appropriate BroadcastFactory and BroadcastObject
broadcastFactory.initialize(isDriver, conf, securityManager)
initialized = true
}
}
}
def stop() {
broadcastFactory.stop()
}
private val nextBroadcastId = new AtomicLong(0)
def newBroadcast[T: ClassTag](value_ : T, isLocal: Boolean): Broadcast[T] = {
broadcastFactory.newBroadcast[T](value_, isLocal, nextBroadcastId.getAndIncrement())
}
def unbroadcast(id: Long, removeFromDriver: Boolean, blocking: Boolean) {
broadcastFactory.unbroadcast(id, removeFromDriver, blocking)
}
}
Broadcast源碼
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.broadcast
import java.io.Serializable
import org.apache.spark.SparkException
import org.apache.spark.Logging
import org.apache.spark.util.Utils
import scala.reflect.ClassTag
/**
* A broadcast variable. Broadcast variables allow the programmer to keep a read-only variable
* cached on each machine rather than shipping a copy of it with tasks. They can be used, for
* example, to give every node a copy of a large input dataset in an efficient manner. Spark also
* attempts to distribute broadcast variables using efficient broadcast algorithms to reduce
* communication cost.
*
* Broadcast variables are created from a variable `v` by calling
* [[org.apache.spark.SparkContext#broadcast]].
* The broadcast variable is a wrapper around `v`, and its value can be accessed by calling the
* `value` method. The interpreter session below shows this:
*
* {{{
* scala> val broadcastVar = sc.broadcast(Array(1, 2, 3))
* broadcastVar: org.apache.spark.broadcast.Broadcast[Array[Int]] = Broadcast(0)
*
* scala> broadcastVar.value
* res0: Array[Int] = Array(1, 2, 3)
* }}}
*
* After the broadcast variable is created, it should be used instead of the value `v` in any
* functions run on the cluster so that `v` is not shipped to the nodes more than once.
* In addition, the object `v` should not be modified after it is broadcast in order to ensure
* that all nodes get the same value of the broadcast variable (e.g. if the variable is shipped
* to a new node later).
*
* @param id A unique identifier for the broadcast variable.
* @tparam T Type of the data contained in the broadcast variable.
*/
abstract class Broadcast[T: ClassTag](val id: Long) extends Serializable with Logging {
/**
* Flag signifying whether the broadcast variable is valid
* (that is, not already destroyed) or not.
*/
@volatile private var _isValid = true
private var _destroySite = ""
/** Get the broadcasted value. */
def value: T = {
assertValid()
getValue()
}
/**
* Asynchronously delete cached copies of this broadcast on the executors.
* If the broadcast is used after this is called, it will need to be re-sent to each executor.
*/
def unpersist() {
unpersist(blocking = false)
}
/**
* Delete cached copies of this broadcast on the executors. If the broadcast is used after
* this is called, it will need to be re-sent to each executor.
* @param blocking Whether to block until unpersisting has completed
*/
def unpersist(blocking: Boolean) {
assertValid()
doUnpersist(blocking)
}
/**
* Destroy all data and metadata related to this broadcast variable. Use this with caution;
* once a broadcast variable has been destroyed, it cannot be used again.
* This method blocks until destroy has completed
*/
def destroy() {
destroy(blocking = true)
}
/**
* Destroy all data and metadata related to this broadcast variable. Use this with caution;
* once a broadcast variable has been destroyed, it cannot be used again.
* @param blocking Whether to block until destroy has completed
*/
private[spark] def destroy(blocking: Boolean) {
assertValid()
_isValid = false
_destroySite = Utils.getCallSite().shortForm
logInfo("Destroying %s (from %s)".format(toString, _destroySite))
doDestroy(blocking)
}
/**
* Whether this Broadcast is actually usable. This should be false once persisted state is
* removed from the driver.
*/
private[spark] def isValid: Boolean = {
_isValid
}
/**
* Actually get the broadcasted value. Concrete implementations of Broadcast class must
* define their own way to get the value.
*/
protected def getValue(): T
/**
* Actually unpersist the broadcasted value on the executors. Concrete implementations of
* Broadcast class must define their own logic to unpersist their own data.
*/
protected def doUnpersist(blocking: Boolean)
/**
* Actually destroy all data and metadata related to this broadcast variable.
* Implementation of Broadcast class must define their own logic to destroy their own
* state.
*/
protected def doDestroy(blocking: Boolean)
/** Check if this broadcast is valid. If not valid, exception is thrown. */
protected def assertValid() {
if (!_isValid) {
throw new SparkException(
"Attempted to use %s after it was destroyed (%s) ".format(toString, _destroySite))
}
}
override def toString: String = "Broadcast(" + id + ")"
}
其餘的,不一一贅述了。
三、累加器
爲何須要,累加器?
答:第一種狀況,是,test把數據副本運行起來。
第二種狀況,有全局變量和局部變量,有了廣播,爲何還須要累加器?
累加器是僅僅被相關操做累加的變量,所以能夠在並行中被有效地支持。它能夠被用來實現計數器和總和。Spark原生地只支持數字類型的累加器,編程者能夠添加新類型的支持。若是建立累加器時指定了名字,能夠在Spark的UI界面看到。這有利於理解每一個執行階段的進程。(對於python還不支持)
累加器經過對一個初始化了的變量v調用SparkContext.accumulator(v)來建立。在集羣上運行的任務能夠經過add或者"+="方法在累加器上進行累加操做。可是,它們不能讀取它的值。只有驅動程序可以讀取它的值,經過累加器的value方法。
累加器的特徵:全局的,Accumulator:對於Executor只能修改但不可讀,只對Driver可讀(由於經過Driver控制整個集羣的狀態),不一樣的executor 修改,不會彼此覆蓋(枷鎖機制)
累加器實戰:
scala> val sum = sc.accumulator(0)
sum: org.apache.spark.Accumulator[Int] = 0
scala> val data = sc.parallelize(1 to 100)
data: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[63] at parallelize at <console>:21
scala> val result = data.foreach(item =>sum += item)
took 6.548568 s
result: Unit = ()
scala> println(sum)
5050
一、累計器全局(全集羣)惟一,只增不減(Executor中的task去修改,即累加);二、累加器是Executor共享;
accumulator源碼
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark
import java.io.{ObjectInputStream, Serializable}
import scala.collection.generic.Growable
import scala.collection.Map
import scala.collection.mutable
import scala.ref.WeakReference
import scala.reflect.ClassTag
import org.apache.spark.serializer.JavaSerializer
import org.apache.spark.util.Utils
/**
* A data type that can be accumulated, ie has an commutative and associative "add" operation,
* but where the result type, `R`, may be different from the element type being added, `T`.
*
* You must define how to add data, and how to merge two of these together. For some data types,
* such as a counter, these might be the same operation. In that case, you can use the simpler
* [[org.apache.spark.Accumulator]]. They won't always be the same, though -- e.g., imagine you are
* accumulating a set. You will add items to the set, and you will union two sets together.
*
* @param initialValue initial value of accumulator
* @param param helper object defining how to add elements of type `R` and `T`
* @param name human-readable name for use in Spark's web UI
* @param internal if this [[Accumulable]] is internal. Internal [[Accumulable]]s will be reported
* to the driver via heartbeats. For internal [[Accumulable]]s, `R` must be
* thread safe so that they can be reported correctly.
* @tparam R the full accumulated data (result type)
* @tparam T partial data that can be added in
*/
class Accumulable[R, T] private[spark] (
@transient initialValue: R,
param: AccumulableParam[R, T],
val name: Option[String],
internal: Boolean)
extends Serializable {
private[spark] def this(
@transient initialValue: R, param: AccumulableParam[R, T], internal: Boolean) = {
this(initialValue, param, None, internal)
}
def this(@transient initialValue: R, param: AccumulableParam[R, T], name: Option[String]) =
this(initialValue, param, name, false)
def this(@transient initialValue: R, param: AccumulableParam[R, T]) =
this(initialValue, param, None)
val id: Long = Accumulators.newId
@volatile @transient private var value_ : R = initialValue // Current value on master
val zero = param.zero(initialValue) // Zero value to be passed to workers
private var deserialized = false
Accumulators.register(this)
/**
* If this [[Accumulable]] is internal. Internal [[Accumulable]]s will be reported to the driver
* via heartbeats. For internal [[Accumulable]]s, `R` must be thread safe so that they can be
* reported correctly.
*/
private[spark] def isInternal: Boolean = internal
/**
* Add more data to this accumulator / accumulable
* @param term the data to add
*/
def += (term: T) { value_ = param.addAccumulator(value_, term) }
/**
* Add more data to this accumulator / accumulable
* @param term the data to add
*/
def add(term: T) { value_ = param.addAccumulator(value_, term) }
/**
* Merge two accumulable objects together
*
* Normally, a user will not want to use this version, but will instead call `+=`.
* @param term the other `R` that will get merged with this
*/
def ++= (term: R) { value_ = param.addInPlace(value_, term)}
/**
* Merge two accumulable objects together
*
* Normally, a user will not want to use this version, but will instead call `add`.
* @param term the other `R` that will get merged with this
*/
def merge(term: R) { value_ = param.addInPlace(value_, term)}
/**
* Access the accumulator's current value; only allowed on master.
*/
def value: R = {
if (!deserialized) {
value_
} else {
throw new UnsupportedOperationException("Can't read accumulator value in task")
}
}
/**
* Get the current value of this accumulator from within a task.
*
* This is NOT the global value of the accumulator. To get the global value after a
* completed operation on the dataset, call `value`.
*
* The typical use of this method is to directly mutate the local value, eg., to add
* an element to a Set.
*/
def localValue: R = value_
/**
* Set the accumulator's value; only allowed on master.
*/
def value_= (newValue: R) {
if (!deserialized) {
value_ = newValue
} else {
throw new UnsupportedOperationException("Can't assign accumulator value in task")
}
}
/**
* Set the accumulator's value; only allowed on master
*/
def setValue(newValue: R) {
this.value = newValue
}
// Called by Java when deserializing an object
private def readObject(in: ObjectInputStream): Unit = Utils.tryOrIOException {
in.defaultReadObject()
value_ = zero
deserialized = true
// Automatically register the accumulator when it is deserialized with the task closure.
//
// Note internal accumulators sent with task are deserialized before the TaskContext is created
// and are registered in the TaskContext constructor. Other internal accumulators, such SQL
// metrics, still need to register here.
val taskContext = TaskContext.get()
if (taskContext != null) {
taskContext.registerAccumulator(this)
}
}
override def toString: String = if (value_ == null) "null" else value_.toString
}
/**
* Helper object defining how to accumulate values of a particular type. An implicit
* AccumulableParam needs to be available when you create [[Accumulable]]s of a specific type.
*
* @tparam R the full accumulated data (result type)
* @tparam T partial data that can be added in
*/
trait AccumulableParam[R, T] extends Serializable {
/**
* Add additional data to the accumulator value. Is allowed to modify and return `r`
* for efficiency (to avoid allocating objects).
*
* @param r the current value of the accumulator
* @param t the data to be added to the accumulator
* @return the new value of the accumulator
*/
def addAccumulator(r: R, t: T): R
/**
* Merge two accumulated values together. Is allowed to modify and return the first value
* for efficiency (to avoid allocating objects).
*
* @param r1 one set of accumulated data
* @param r2 another set of accumulated data
* @return both data sets merged together
*/
def addInPlace(r1: R, r2: R): R
/**
* Return the "zero" (identity) value for an accumulator type, given its initial value. For
* example, if R was a vector of N dimensions, this would return a vector of N zeroes.
*/
def zero(initialValue: R): R
}
private[spark] class
GrowableAccumulableParam[R <% Growable[T] with TraversableOnce[T] with Serializable: ClassTag, T]
extends AccumulableParam[R, T] {
def addAccumulator(growable: R, elem: T): R = {
growable += elem
growable
}
def addInPlace(t1: R, t2: R): R = {
t1 ++= t2
t1
}
def zero(initialValue: R): R = {
// We need to clone initialValue, but it's hard to specify that R should also be Cloneable.
// Instead we'll serialize it to a buffer and load it back.
val ser = new JavaSerializer(new SparkConf(false)).newInstance()
val copy = ser.deserialize[R](ser.serialize(initialValue))
copy.clear() // In case it contained stuff
copy
}
}
/**
* A simpler value of [[Accumulable]] where the result type being accumulated is the same
* as the types of elements being merged, i.e. variables that are only "added" to through an
* associative operation and can therefore be efficiently supported in parallel. They can be used
* to implement counters (as in MapReduce) or sums. Spark natively supports accumulators of numeric
* value types, and programmers can add support for new types.
*
* An accumulator is created from an initial value `v` by calling [[SparkContext#accumulator]].
* Tasks running on the cluster can then add to it using the [[Accumulable#+=]] operator.
* However, they cannot read its value. Only the driver program can read the accumulator's value,
* using its value method.
*
* The interpreter session below shows an accumulator being used to add up the elements of an array:
*
* {{{
* scala> val accum = sc.accumulator(0)
* accum: spark.Accumulator[Int] = 0
*
* scala> sc.parallelize(Array(1, 2, 3, 4)).foreach(x => accum += x)
* ...
* 10/09/29 18:41:08 INFO SparkContext: Tasks finished in 0.317106 s
*
* scala> accum.value
* res2: Int = 10
* }}}
*
* @param initialValue initial value of accumulator
* @param param helper object defining how to add elements of type `T`
* @tparam T result type
*/
class Accumulator[T] private[spark] (
@transient private[spark] val initialValue: T,
param: AccumulatorParam[T],
name: Option[String],
internal: Boolean)
extends Accumulable[T, T](initialValue, param, name, internal) {
def this(initialValue: T, param: AccumulatorParam[T], name: Option[String]) = {
this(initialValue, param, name, false)
}
def this(initialValue: T, param: AccumulatorParam[T]) = {
this(initialValue, param, None, false)
}
}
/**
* A simpler version of [[org.apache.spark.AccumulableParam]] where the only data type you can add
* in is the same type as the accumulated value. An implicit AccumulatorParam object needs to be
* available when you create Accumulators of a specific type.
*
* @tparam T type of value to accumulate
*/
trait AccumulatorParam[T] extends AccumulableParam[T, T] {
def addAccumulator(t1: T, t2: T): T = {
addInPlace(t1, t2)
}
}
object AccumulatorParam {
// The following implicit objects were in SparkContext before 1.2 and users had to
// `import SparkContext._` to enable them. Now we move them here to make the compiler find
// them automatically. However, as there are duplicate codes in SparkContext for backward
// compatibility, please update them accordingly if you modify the following implicit objects.
implicit object DoubleAccumulatorParam extends AccumulatorParam[Double] {
def addInPlace(t1: Double, t2: Double): Double = t1 + t2
def zero(initialValue: Double): Double = 0.0
}
implicit object IntAccumulatorParam extends AccumulatorParam[Int] {
def addInPlace(t1: Int, t2: Int): Int = t1 + t2
def zero(initialValue: Int): Int = 0
}
implicit object LongAccumulatorParam extends AccumulatorParam[Long] {
def addInPlace(t1: Long, t2: Long): Long = t1 + t2
def zero(initialValue: Long): Long = 0L
}
implicit object FloatAccumulatorParam extends AccumulatorParam[Float] {
def addInPlace(t1: Float, t2: Float): Float = t1 + t2
def zero(initialValue: Float): Float = 0f
}
// TODO: Add AccumulatorParams for other types, e.g. lists and strings
}
// TODO: The multi-thread support in accumulators is kind of lame; check
// if there's a more intuitive way of doing it right
private[spark] object Accumulators extends Logging {
/**
* This global map holds the original accumulator objects that are created on the driver.
* It keeps weak references to these objects so that accumulators can be garbage-collected
* once the RDDs and user-code that reference them are cleaned up.
*/
val originals = mutable.Map[Long, WeakReference[Accumulable[_, _]]]()
private var lastId: Long = 0
def newId(): Long = synchronized {
lastId += 1
lastId
}
def register(a: Accumulable[_, _]): Unit = synchronized {
originals(a.id) = new WeakReference[Accumulable[_, _]](a)
}
def remove(accId: Long) {
synchronized {
originals.remove(accId)
}
}
// Add values to the original accumulators with some given IDs
def add(values: Map[Long, Any]): Unit = synchronized {
for ((id, value) <- values) {
if (originals.contains(id)) {
// Since we are now storing weak references, we must check whether the underlying data
// is valid.
originals(id).get match {
case Some(accum) => accum.asInstanceOf[Accumulable[Any, Any]] ++= value
case None =>
throw new IllegalAccessError("Attempted to access garbage collected Accumulator.")
}
} else {
logWarning(s"Ignoring accumulator update for unknown accumulator id $id")
}
}
}
}
private[spark] object InternalAccumulator {
val PEAK_EXECUTION_MEMORY = "peakExecutionMemory"
val TEST_ACCUMULATOR = "testAccumulator"
// For testing only.
// This needs to be a def since we don't want to reuse the same accumulator across stages.
private def maybeTestAccumulator: Option[Accumulator[Long]] = {
if (sys.props.contains("spark.testing")) {
Some(new Accumulator(
0L, AccumulatorParam.LongAccumulatorParam, Some(TEST_ACCUMULATOR), internal = true))
} else {
None
}
}
/**
* Accumulators for tracking internal metrics.
*
* These accumulators are created with the stage such that all tasks in the stage will
* add to the same set of accumulators. We do this to report the distribution of accumulator
* values across all tasks within each stage.
*/
def create(sc: SparkContext): Seq[Accumulator[Long]] = {
val internalAccumulators = Seq(
// Execution memory refers to the memory used by internal data structures created
// during shuffles, aggregations and joins. The value of this accumulator should be
// approximately the sum of the peak sizes across all such data structures created
// in this task. For SQL jobs, this only tracks all unsafe operators and ExternalSort.
new Accumulator(
0L, AccumulatorParam.LongAccumulatorParam, Some(PEAK_EXECUTION_MEMORY), internal = true)
) ++ maybeTestAccumulator.toSeq
internalAccumulators.foreach { accumulator =>
sc.cleaner.foreach(_.registerAccumulatorForCleanup(accumulator))
}
internalAccumulators
}
}
參考
DT大數據夢工廠
新浪微博:www.weibo.com/ilovepains/
微信公衆號:DT_Spark
博客:http://.blog.sina.com.cn/ilovepains
TEL:18610086859
Email:18610086859@vip.126.com
參考連接:
http://blog.csdn.net/kxr0502/article/details/50574561
http://blog.csdn.net/happyanger6/article/details/46576831
http://blog.csdn.net/happyanger6/article/details/46552823