function [sys,x0,str,ts,simStateCompliance] = sfuntmpl(t,x,u,flag) %SFUNTMPL General MATLAB S-Function Template % With MATLAB S-functions, you can define you own ordinary differential % equations (ODEs), discrete system equations, and/or just about % any type of algorithm to be used within a Simulink block diagram. % % The general form of an MATLAB S-function syntax is: % [SYS,X0,STR,TS,SIMSTATECOMPLIANCE] = SFUNC(T,X,U,FLAG,P1,...,Pn) % % What is returned by SFUNC at a given point in time, T, depends on the % value of the FLAG, the current state vector, X, and the current % input vector, U. % % FLAG RESULT DESCRIPTION % ----- ------ -------------------------------------------- % 0 [SIZES,X0,STR,TS] Initialization, return system sizes in SYS, % initial state in X0, state ordering strings % in STR, and sample times in TS. % 1 DX Return continuous state derivatives in SYS. % 2 DS Update discrete states SYS = X(n+1) % 3 Y Return outputs in SYS. % 4 TNEXT Return next time hit for variable step sample % time in SYS. % 5 Reserved for future (root finding). % 9 [] Termination, perform any cleanup SYS=[]. % % % The state vectors, X and X0 consists of continuous states followed % by discrete states. % % Optional parameters, P1,...,Pn can be provided to the S-function and % used during any FLAG operation. % % When SFUNC is called with FLAG = 0, the following information % should be returned: % % SYS(1) = Number of continuous states. % SYS(2) = Number of discrete states. % SYS(3) = Number of outputs. % SYS(4) = Number of inputs. % Any of the first four elements in SYS can be specified % as -1 indicating that they are dynamically sized. The % actual length for all other flags will be equal to the % length of the input, U. % SYS(5) = Reserved for root finding. Must be zero. % SYS(6) = Direct feedthrough flag (1=yes, 0=no). The s-function % has direct feedthrough if U is used during the FLAG=3 % call. Setting this to 0 is akin to making a promise that % U will not be used during FLAG=3. If you break the promise % then unpredictable results will occur. % SYS(7) = Number of sample times. This is the number of rows in TS. % % % X0 = Initial state conditions or [] if no states. % % STR = State ordering strings which is generally specified as []. % % TS = An m-by-2 matrix containing the sample time % (period, offset) information. Where m = number of sample % times. The ordering of the sample times must be: % % TS = [0 0, : Continuous sample time. % 0 1, : Continuous, but fixed in minor step % sample time. % PERIOD OFFSET, : Discrete sample time where % PERIOD > 0 & OFFSET < PERIOD. % -2 0]; : Variable step discrete sample time % where FLAG=4 is used to get time of % next hit. % % There can be more than one sample time providing % they are ordered such that they are monotonically % increasing. Only the needed sample times should be % specified in TS. When specifying more than one % sample time, you must check for sample hits explicitly by % seeing if % abs(round((T-OFFSET)/PERIOD) - (T-OFFSET)/PERIOD) % is within a specified tolerance, generally 1e-8. This % tolerance is dependent upon your model's sampling times % and simulation time. % % You can also specify that the sample time of the S-function % is inherited from the driving block. For functions which % change during minor steps, this is done by % specifying SYS(7) = 1 and TS = [-1 0]. For functions which % are held during minor steps, this is done by specifying % SYS(7) = 1 and TS = [-1 1]. % % SIMSTATECOMPLIANCE = Specifices how to handle this block when saving and % restoring the complete simulation state of the % model. The allowed values are: 'DefaultSimState', % 'HasNoSimState' or 'DisallowSimState'. If this value % is not speficified, then the block's compliance with % simState feature is set to 'UknownSimState'. % Copyright 1990-2010 The MathWorks, Inc. % % The following outlines the general structure of an S-function. % switch flag, %%%%%%%%%%%%%%%%%% % Initialization % %%%%%%%%%%%%%%%%%% case 0, [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes; %%%%%%%%%%%%%%% % Derivatives % %%%%%%%%%%%%%%% case 1, sys=mdlDerivatives(t,x,u); %%%%%%%%%% % Update % %%%%%%%%%% case 2, sys=mdlUpdate(t,x,u); %%%%%%%%%%% % Outputs % %%%%%%%%%%% case 3, sys=mdlOutputs(t,x,u); %%%%%%%%%%%%%%%%%%%%%%% % GetTimeOfNextVarHit % %%%%%%%%%%%%%%%%%%%%%%% case 4, sys=mdlGetTimeOfNextVarHit(t,x,u); %%%%%%%%%%%%% % Terminate % %%%%%%%%%%%%% case 9, sys=mdlTerminate(t,x,u); %%%%%%%%%%%%%%%%%%%% % Unexpected flags % %%%%%%%%%%%%%%%%%%%% otherwise DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag)); end % end sfuntmpl % %============================================================================= % mdlInitializeSizes % Return the sizes, initial conditions, and sample times for the S-function. %============================================================================= % function [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes % % call simsizes for a sizes structure, fill it in and convert it to a % sizes array. % % Note that in this example, the values are hard coded. This is not a % recommended practice as the characteristics of the block are typically % defined by the S-function parameters. % sizes = simsizes; sizes.NumContStates = 0; sizes.NumDiscStates = 0; sizes.NumOutputs = 0; sizes.NumInputs = 0; sizes.DirFeedthrough = 1; sizes.NumSampleTimes = 1; % at least one sample time is needed sys = simsizes(sizes); % % initialize the initial conditions % x0 = []; % % str is always an empty matrix % str = []; % % initialize the array of sample times % ts = [0 0]; % Specify the block simStateCompliance. The allowed values are: % 'UnknownSimState', < The default setting; warn and assume DefaultSimState % 'DefaultSimState', < Same sim state as a built-in block % 'HasNoSimState', < No sim state % 'DisallowSimState' < Error out when saving or restoring the model sim state simStateCompliance = 'UnknownSimState'; % end mdlInitializeSizes % %============================================================================= % mdlDerivatives % Return the derivatives for the continuous states. %============================================================================= % function sys=mdlDerivatives(t,x,u) sys = []; % end mdlDerivatives % %============================================================================= % mdlUpdate % Handle discrete state updates, sample time hits, and major time step % requirements. %============================================================================= % function sys=mdlUpdate(t,x,u) sys = []; % end mdlUpdate % %============================================================================= % mdlOutputs % Return the block outputs. %============================================================================= % function sys=mdlOutputs(t,x,u) sys = []; % end mdlOutputs % %============================================================================= % mdlGetTimeOfNextVarHit % Return the time of the next hit for this block. Note that the result is % absolute time. Note that this function is only used when you specify a % variable discrete-time sample time [-2 0] in the sample time array in % mdlInitializeSizes. %============================================================================= % function sys=mdlGetTimeOfNextVarHit(t,x,u) sampleTime = 1; % Example, set the next hit to be one second later. sys = t + sampleTime; % end mdlGetTimeOfNextVarHit % %============================================================================= % mdlTerminate % Perform any end of simulation tasks. %============================================================================= % function sys=mdlTerminate(t,x,u) sys = []; % end mdlTerminate
S-函數的幾個概念:promise
1) 直接饋通ide
在編寫S-函數時,初始化函數中須要對sizes.DirFeedthrough 進行設置,若是輸出函數mdlOutputs或者對於變採樣時間的mdlGetTimeOfNextVarHit是輸入u的函數,則模塊具備直接饋通的特性sizes.DirFeedthrough=1;不然爲0。函數
2) 採樣時間ui
仿真步長就是整個模型的基礎採樣時間,各個子系統或模塊的採樣時間,必須以這個步長爲整數倍。this
連續信號和離散信號對計算機而言其實都是採樣而來的,只是採樣時間不一樣,連續信號採樣時間可認爲趨於0且基於微分方程,離散信號採樣時間比較長基於差分方程。離散信號當前狀態由前一個時刻的狀態決定,連續信號能夠經過微分方程計算獲得。若是要將連續信號離散化還要考慮下信號可否恢復的問題,即香農定理。spa
採樣時間點的肯定:下一個採樣時間=(n*採樣間隔)+ 偏移量,n表示當前的仿真步,從0開始。翻譯
對於連續採樣時間,ts能夠設置爲[0 0],其中偏移量爲0;rest
對於離散採樣時間,ts假設爲[0.25 0.1],表示在S-函數仿真開始後0.1s開始每隔0.25s運行一次,固然每一個採樣時刻都會調用mdlOutPuts和mdlUpdate函數;code
對於變採樣時間,即離散採樣時間的兩次採樣時間間隔是可變的,每次仿真步開始時都須要用mdlGetTimeNextVarHit計算下一個採樣時間的時刻值。ts能夠設置爲[-2 0]。orm
對於多個任務,每一個任務均可以以不一樣的採樣速率執行S-函數,假設任務A在仿真開始每隔0.25s執行一次,任務B在仿真後0.1s每隔1s執行一次,那麼ts設置爲[0.25 0.1;1.0 0.1],具體到S-函數的執行時間爲[0 0.1 0.25 0.5 0.75 1.0 1.1…]。
若是用戶想繼承被鏈接模塊的採樣時間,ts只要設置爲[-1 0]。
(1).mdlInitializeSizes函數-初始化函數
function[sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes sizes = simsizes; sizes.NumContStates = 0; %連續狀態個數 sizes.NumDiscStates = 0; %離散狀態個數 sizes.NumOutputs = 0; %輸出個數 sizes.NumInputs = 0; %輸入個數 sizes.DirFeedthrough = 1; %是否直接饋通 sizes.NumSampleTimes = 1; %採樣時間個數,至少一個 sys = simsizes(sizes); %將size結構傳到sys中 x0 = []; %初始狀態向量,由傳入的參數決定,沒有爲空 str = []; ts = [0 0]; %設置採樣時間,這裏是連續採樣,偏移量爲0 % Specify the blocksimStateCompliance. The allowed values are: % 'UnknownSimState', < The defaultsetting; warn and assume DefaultSimState % 'DefaultSimState', < Same sim state as abuilt-in block % 'HasNoSimState', < No sim state % 'DisallowSimState' < Error out whensaving or restoring the model sim state simStateCompliance = 'UnknownSimState';
(2).mdlGetTimeOfNextVarHit(t,x,u)函數-計算下一個採樣時間
functionsys=mdlGetTimeOfNextVarHit(t,x,u) sampleTime = 1; % Example, set the next hit to be one secondlater. sys = t + sampleTime;
(3).mdlOutputs函數-計算S函數輸出
functionsys=mdlOutputs(t,x,u) sys = [];
(4).mdlUpdate函數-更新 function sys=mdlUpdate(t,x,u) sys = [];
(5).mdlDerivatives函數-微分函數(計算連續狀態導數)
functionsys=mdlDerivatives(t,x,u) sys = [];
(6).mdlTerminate函數-終止仿真 functionsys=mdlTerminate(t,x,u) sys = [];
function [sys,x0,str,ts,simStateCompliance] = sfuntmpl_c(t,x,u,flag) %%%%Simulink中s函數模板的翻譯版 %[sys,x0,str,ts,simStateCompliance] = sfuntmpl(t,x,u,flag,p1,…pn) % flag result 描述 % —– —— ——————————————– % 0 [sizes,x0,str,Ts] 初始化,返回SYS的大小,初始狀態x0,str,採樣時間Ts % 1 DX 返回連續狀態微分SYS. % 2 DS 更新離散狀態 SYS = X(n+1) % 3 Y 返回輸出SYS. % 4 TNEXT Return next time hit for variable step sample time in SYS. % 5 Reserved for future (root finding). % 9 [] 結束 perform any cleanup SYS=[]. % 當flag=0時,如下信息必須賦值回傳 % SYS(1) = 連續狀態個數 % SYS(2) = 離散狀態個數 % SYS(3) = 輸出量個數 % SYS(4) = 輸入量個數 注:上述4個變量能夠賦值爲-1,表示其值可變 % SYS(5) = 保留值。爲0. % SYS(6) = 直接饋通標誌(1=yes, 0=no).若是u在flag=3時被使用,說明S函數是直接饋通,賦值爲1. 不然爲0. % SYS(7) = 採樣時間個數,Ts的行數 % % X0 = 初始狀態。沒有則賦值爲[].除flag=0外,被忽略。 % STR = 系統保留,設爲[]. % TS = m*2 矩陣。(採樣週期,偏移量) % TS = [0 0, : 連續採樣 % 0 1, : 在1個Ts後連續採樣 % PERIOD OFFSET, : Discrete sample time where % PERIOD > 0 & OFFSET < PERIOD. % -2 0]; : 變步長離散採樣, % flag=4用於決定下一個採樣時刻 % 注: % 若但願每一個時間步都運行,則設Ts=[0,0] % 若但願繼承採樣時間運行,則設Ts=[-1,0] % 若但願繼承採樣時間運行,且但願在微步內不變化,應該設Ts=[-1,1] % 若但願仿真開始0.1s後每隔0.25秒運行,則設Ts=[0.25,0.1] % 若但願按照不一樣速率執行不一樣任務,則Ts應按照升序排列。 % 即:每隔0.25秒執行一個任務,同時在開始0.1秒後,每隔1秒執行另外一個任務 % Ts=[0.25,0; 1.0,0.1],則simulink將在下列時刻執行s函數[0,0.1,0.25,0.5,0.75,1,1.1,…] % 如下是S函數的主函數 switch flag, case 0, % 初始化 [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes; case 1, % 連續時間導數 sys=mdlDerivatives(t,x,u); case 2, % 更新離散狀態量 sys=mdlUpdate(t,x,u); case 3, % 計算輸出 sys=mdlOutputs(t,x,u); case 4, % 計算下一步採樣時刻 sys=mdlGetTimeOfNextVarHit(t,x,u); case 9, % 結束仿真 sys=mdlTerminate(t,x,u); otherwise % 未知flag值 DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag)); end % S函數主程序結束 %============================================================================= % mdlInitializeSizes % 返回s函數的sizes、初始條件、採樣時刻 %============================================================================= function [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes % 調用simsizes函數爲sizes結構賦值 % simsizes函數是S函數模塊特有的。它的結構和代碼是固定的。 sizes = simsizes; sizes.NumContStates = 0; %連續狀態個數 sizes.NumDiscStates = 0; %離散狀態個數 sizes.NumOutputs = 0; %輸出量個數 sizes.NumInputs = 0; %輸入量個數 sizes.DirFeedthrough = 1; %直接饋通標誌 sizes.NumSampleTimes = 1; % 至少有一個採樣時刻 sys = simsizes(sizes); x0 = 0; % 狀態初始化 str = []; % str 始終爲空 ts = [0 0];% 初始化採樣時間 % 指定simStateCompliance的值. % ‘UnknownSimState’, < 默認值; warn and assume DefaultSimState % ‘DefaultSimState’, < Same sim state as a built-in block % ‘HasNoSimState’, < No sim state % ‘DisallowSimState’ < Error out when saving or restoring the model sim state simStateCompliance = 'UnknownSimState'; % 子函數mdlInitializeSizes 結束 %============================================================================= % mdlDerivatives % 返回連續狀態量的導數 %============================================================================= function sys=mdlDerivatives(t,x,u) sys = []; % 子函數mdlDerivatives結束 %============================================================================= % mdlUpdate %更新離散時間狀態,採樣時刻和主時間步的要求。 %============================================================================= function sys=mdlUpdate(t,x,u) sys = []; % 子函數 mdlUpdate 結束 %============================================================================= % mdlOutputs % 計算並返回模塊輸出量 %============================================================================= function sys=mdlOutputs(t,x,u) sys = []; % 子函數 mdlOutputs 結束 %============================================================================= % mdlGetTimeOfNextVarHit % 返回下一個採樣時刻。注意返回結果是一個絕對時間,只在Ts=[-2,0]時使用。 %============================================================================= function sys=mdlGetTimeOfNextVarHit(t,x,u) sampleTime = 1; % 例子。設置下一個採樣時刻爲1s後。 sys = t + sampleTime; % 子函數 mdlGetTimeOfNextVarHit 結束 %============================================================================= % mdlTerminate % 仿真結束 %============================================================================= % function sys=mdlTerminate(t,x,u) sys = []; % 子函數 mdlTerminate結束
function [sys,x0,str,ts,simStateCompliance]=limintm(t,x,u,flag,lb,ub,xi)
%傳入的三個參數放在後面lb,ub,xi的位置 %LIMINTM Limited integrator implementation. % Example MATLAB file S-function implementing a continuous limited integrator % where the output is bounded by lower bound (LB) and upper bound (UB) % with initial conditions (XI). % % See sfuntmpl.m for a general S-function template. % % See also SFUNTMPL. % Copyright 1990-2009 The MathWorks, Inc. % $Revision: 1.1.6.2 $ switch flag %%%%%%%%%%%%%%%%%% % Initialization % %%%%%%%%%%%%%%%%%% case 0 [sys,x0,str,ts,simStateCompliance] = mdlInitializeSizes(lb,ub,xi); %%%%%%%%%%%%%%% % Derivatives % %%%%%%%%%%%%%%% case 1 sys = mdlDerivatives(t,x,u,lb,ub); %%%%%%%%%%%%%%%%%%%%%%%% % Update and Terminate % %%%%%%%%%%%%%%%%%%%%%%%% case {2,9} sys = []; % do nothing %%%%%%%%%% % Output % %%%%%%%%%% case 3 sys = mdlOutputs(t,x,u); otherwise DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag)); end % end limintm % %============================================================================= % mdlInitializeSizes % Return the sizes, initial conditions, and sample times for the S-function. %============================================================================= % function [sys,x0,str,ts,simStateCompliance] = mdlInitializeSizes(lb,ub,xi) sizes = simsizes; sizes.NumContStates = 1;%1個連續狀態,即積分狀態 sizes.NumDiscStates = 0; sizes.NumOutputs = 1; sizes.NumInputs = 1; sizes.DirFeedthrough = 0; sizes.NumSampleTimes = 1; sys = simsizes(sizes); str = []; x0 = xi; %積分狀態初始條件‘ ts = [0 0]; % sample time: [period, offset] % speicfy that the simState for this s-function is same as the default simStateCompliance = 'DefaultSimState'; % end mdlInitializeSizes % %============================================================================= % mdlDerivatives % Compute derivatives for continuous states. %============================================================================= % function sys = mdlDerivatives(t,x,u,lb,ub) if (x <= lb & u < 0) | (x>= ub & u>0 ) sys = 0; else sys = u; end % end mdlDerivatives % %============================================================================= % mdlOutputs % Return the output vector for the S-function %============================================================================= % function sys = mdlOutputs(t,x,u) sys = x; % end mdlOutputs