NLP教程:教你如何自動生成對聯

桃符早易硃紅紙,楊柳輕搖翡翠羣 ——FlyAI Couplets
體驗對對聯Demo: https://www.flyai.com/couplets

微信公衆號條圖.png

循環神經網絡最重要的特色就是能夠將序列做爲輸入和輸出,而對聯的上聯和下聯都是典型的序列文字,那麼,可否使用神經網絡進行對對聯呢?答案是確定的。本項目使用網絡上收集的對聯數據集地址做爲訓練數據,運用Seq2Seq + 注意力機制網絡完成了根據上聯對下聯的任務。python

項目流程

  1. 數據處理
  2. Seq2Seq + Attention 模型解讀
  3. 模型代碼實現
  4. 訓練神經網絡

數據處理
建立詞向量字典和詞袋字典

在原始數據集中,對聯中每一個漢字使用空格進行分割,格式以下所示:json

​    室 內 崇 蘭 映 日,林 間 修 竹 當 風

​    翠 岸 青 荷 , 琴 曲 瀟 瀟 情 輾 轉,寒 山 古 月 , 風 聲 瑟 瑟 意 彷 徨

因爲每一個漢字表示一個單一的詞,所以不須要對原始數據進行分詞。在獲取原始數據以後,須要建立兩個字典,分別是字到詞向量的字典和字到詞袋的字典,這樣作是爲了將詞向量輸入到網絡中,而輸出處使用詞袋進行分類。在詞袋模型中,添加三個關鍵字 ' 「 ', ' 」 ' 和 ' ~ ' ,分別表明輸入輸出的起始,結束和空白處的補零,其關鍵字分別爲1,2,0。微信

class Processor(Base): ## Processor是進行數據處理的類

    def __init__(self):
        super(Processor, self).__init__()    
        embedding_path = os.path.join(DATA_PATH, 'embedding.json') ##加載詞向量字典
        words_list_path = os.path.join(DATA_PATH, 'words.json') ## 加載詞袋列表
        with open(embedding_path, encoding='utf-8') as f:
            self.vocab = json.loads(f.read())
        with open(words_list_path, encoding='utf-8') as f:
            word_list = json.loads(f.read())
            self.word2ix = {w:i for i,w in enumerate(word_list, start = 3)}
            self.word2ix['「'] = 1 ##句子開頭爲1
            self.word2ix['」'] = 2 ##句子結尾爲2
            self.word2ix['~'] = 0 ##padding的內容爲0
            self.ix2word = {i:w for w,i in self.word2ix.items()}
               self.max_sts_len = 40 ##最大序列長度
對上聯進行詞向量編碼
def input_x(self, upper): ##upper爲輸入的上聯

        word_list = []
        #review = upper.strip().split(' ')
        review = ['「'] + upper.strip().split(' ') + ['」'] ##開頭加符號1,結束加符號2
        for word in review:                        
            embedding_vector = self.vocab.get(word)
            if embedding_vector is not None:
                if len(embedding_vector) == 200:
                # 給出如今編碼詞典中的詞彙編碼
                    embedding_vector = list(map(lambda x: float(x),embedding_vector)) ## convert element type from str to float in the list
                    word_list.append(embedding_vector)   
        
        if len(word_list) >= self.max_sts_len:
            word_list = word_list[:self.max_sts_len]
            origanal_len = self.max_sts_len
        else:
            origanal_len = len(word_list)
            for i in range(len(word_list), self.max_sts_len):
                word_list.append([0 for j in range(200)]) ## 詞向量維度爲200
        word_list.append([origanal_len for j in range(200)]) ## 最後一行元素爲句子實際長度
        word_list = np.stack(word_list)                
        return word_list
對真實下聯進行詞袋編碼
def input_y(self, lower):

        word_list = [1] ##開頭加起始符號1
        for word in lower:
            word_idx = self.word2ix.get(word)
            if word_idx is not None:
                word_list.append(word_idx)
                
        word_list.append(2) ##結束加終止符號2
        origanal_len = len(word_list)
        if len(word_list) >= self.max_sts_len:
            origanal_len = self.max_sts_len
            word_list = word_list[:self.max_sts_len]
        else:
            origanal_len = len(word_list)
            for i in range(len(word_list), self.max_sts_len):
                word_list.append(0) ## 不夠長度則補0  
        word_list.append(origanal_len) ##最後一個元素爲句子長度
        return word_list
Seq2Seq + Attention 模型解讀

Seq2Seq 模型能夠被認爲是一種由編碼器和解碼器組成的翻譯器,其結構以下圖所示:image
編碼器(Encoder)和解碼器(Decoder)一般使用RNN構成,爲提升效果,RNN一般使用LSTM或RNN,在上圖中的RNN便是使用LSTM。Encoder將輸入翻譯爲中間狀態C,而Decoder將中間狀態翻譯爲輸出。序列中每個時刻的輸出由的隱含層狀態,前一個時刻的輸出值及中間狀態C共同決定。網絡

Attention 機制

在早先的Seq2Seq模型中,中間狀態C僅由最終的隱層決定,也就是說,源輸入中的每一個單詞對C的重要性是同樣的。這種方式在必定程度上下降了輸出對位置的敏感性。而Attention機制正是爲了彌補這一缺陷而設計的。在Attention機制中,中間狀態C具備了位置信息,即每一個位置的C都不相同,第i個位置的C由下面的公式決定:app

image

公式中,Ci表明第i個位置的中間狀態C,Lx表明輸入序列的所有長度,hj是第j個位置的Encoder隱層輸出,而aij爲第i個C與第j個h之間的權重。經過這種方式,對於每一個位置的源輸入就產生了不一樣的C,也就是實現了對不一樣位置單詞的‘注意力’。權重aij有不少的計算方式,本項目中使用使用小型神經網絡進行映射的方式產生aij。dom

模型代碼實現
Encoder

Encoder的結構很是簡單,是一個簡單的RNN單元,因爲本項目中輸入數據是已經編碼好的詞向量,所以不須要使用nn.Embedding() 對input進行編碼。函數

class Encoder(nn.Module):
    def __init__(self, embedding_dim, hidden_dim, num_layers=2, dropout=0.2):
        super().__init__()

        self.embedding_dim = embedding_dim #詞向量維度,本項目中是200維
        self.hidden_dim = hidden_dim #RNN隱層維度
        self.num_layers = num_layers #RNN層數
        self.dropout = dropout  #dropout

        self.rnn = nn.GRU(embedding_dim, hidden_dim,
                          num_layers=num_layers, dropout=dropout)

        self.dropout = nn.Dropout(dropout) #dropout層

    def forward(self, input_seqs, input_lengths, hidden=None):
        # src = [sent len, batch size]
        embedded = self.dropout(input_seqs)
        # embedded = [sent len, batch size, emb dim]
        packed = torch.nn.utils.rnn.pack_padded_sequence(embedded, input_lengths) #將輸入轉換成torch中的pack格式,使得RNN輸入的是真實長度的句子而非padding後的
        #outputs, hidden = self.rnn(packed, hidden)
        outputs, hidden = self.rnn(packed)
        outputs, output_lengths = torch.nn.utils.rnn.pad_packed_sequence(outputs)
        # outputs, hidden = self.rnn(embedded, hidden)
        # outputs = [sent len, batch size, hid dim * n directions]
        # hidden = [n layers, batch size, hid dim]
        # outputs are always from the last layer
        return outputs, hidden
Attentation機制

Attentation權重的計算方式主要有三種,本項目中使用concatenate的方式進行注意力權重的運算。代碼實現以下:測試

class Attention(nn.Module):
    def __init__(self, hidden_dim):
        super(Attention, self).__init__()
        self.hidden_dim = hidden_dim
        self.attn = nn.Linear(self.hidden_dim * 2, hidden_dim)
        self.v = nn.Parameter(torch.rand(hidden_dim))
        self.v.data.normal_(mean=0, std=1. / np.sqrt(self.v.size(0)))

    def forward(self, hidden, encoder_outputs):
        #  encoder_outputs:(seq_len, batch_size, hidden_size)
        #  hidden:(num_layers * num_directions, batch_size, hidden_size)
        max_len = encoder_outputs.size(0)
        h = hidden[-1].repeat(max_len, 1, 1)
        # (seq_len, batch_size, hidden_size)
        attn_energies = self.score(h, encoder_outputs)  # compute attention score
        return F.softmax(attn_energies, dim=1)  # normalize with softmax

    def score(self, hidden, encoder_outputs):
        # (seq_len, batch_size, 2*hidden_size)-> (seq_len, batch_size, hidden_size)
        energy = torch.tanh(self.attn(torch.cat([hidden, encoder_outputs], 2)))
        energy = energy.permute(1, 2, 0)  # (batch_size, hidden_size, seq_len)
        v = self.v.repeat(encoder_outputs.size(1), 1).unsqueeze(1)  # (batch_size, 1, hidden_size)
        energy = torch.bmm(v, energy)  # (batch_size, 1, seq_len)
        return energy.squeeze(1)  # (batch_size, seq_len)
Decoder

Decoder一樣是一個RNN網絡,它的輸入有三個,分別是句子初始值,hidden tensor 和Encoder的output tensor。在本項目中句子的初始值爲‘「’表明的數字1。因爲初始值tensor使用的是詞袋編碼,須要將詞袋索引也映射到詞向量維度,這樣才能與其餘tensor合併。完整的Decoder代碼以下所示:優化

class Decoder(nn.Module):
    def __init__(self, output_dim, embedding_dim, hidden_dim, num_layers=2, dropout=0.2):
        super().__init__()

        self.embedding_dim = embedding_dim ##編碼維度
        self.hid_dim = hidden_dim ##RNN隱層單元數
        self.output_dim = output_dim ##詞袋大小
        self.num_layers = num_layers ##RNN層數
        self.dropout = dropout

        self.embedding = nn.Embedding(output_dim, embedding_dim)
        self.attention = Attention(hidden_dim)
        self.rnn = nn.GRU(embedding_dim + hidden_dim, hidden_dim,
                          num_layers=num_layers, dropout=dropout)
        self.out = nn.Linear(embedding_dim + hidden_dim * 2, output_dim)
        self.dropout = nn.Dropout(dropout)

    def forward(self, input, hidden, encoder_outputs):
        # input = [bsz]
        # hidden = [n layers * n directions, batch size, hid dim]
        # encoder_outputs = [sent len, batch size, hid dim * n directions]
        input = input.unsqueeze(0)
        # input = [1, bsz]
        embedded = self.dropout(self.embedding(input))
        # embedded = [1, bsz, emb dim]
        attn_weight = self.attention(hidden, encoder_outputs)
        # (batch_size, seq_len)
        context = attn_weight.unsqueeze(1).bmm(encoder_outputs.transpose(0, 1)).transpose(0, 1)
        # (batch_size, 1, hidden_dim * n_directions)
        # (1, batch_size, hidden_dim * n_directions)
        emb_con = torch.cat((embedded, context), dim=2)
        # emb_con = [1, bsz, emb dim + hid dim]
        _, hidden = self.rnn(emb_con, hidden)
        # outputs = [sent len, batch size, hid dim * n directions]
        # hidden = [n layers * n directions, batch size, hid dim]
        output = torch.cat((embedded.squeeze(0), hidden[-1], context.squeeze(0)), dim=1)
        output = F.log_softmax(self.out(output), 1)
        # outputs = [sent len, batch size, vocab_size]
        return output, hidden, attn_weight

在此之上,定義一個完整的Seq2Seq類,將Encoder和Decoder結合起來。在該類中,有一個叫作teacher_forcing_ratio的參數,做用爲在訓練過程當中強制使得網絡模型的輸出在必定機率下更改成ground truth,這樣在反向傳播時有利於模型的收斂。該類中有兩個方法,分別在訓練和預測時應用。Seq2Seq類名稱爲Net,代碼以下所示:編碼

class Net(nn.Module):
    def __init__(self, encoder, decoder, device, teacher_forcing_ratio=0.5):
        super().__init__()

        self.encoder = encoder.to(device)
        self.decoder = decoder.to(device)
        self.device = device
        self.teacher_forcing_ratio = teacher_forcing_ratio

    def forward(self, src_seqs, src_lengths, trg_seqs):
        # src_seqs = [sent len, batch size]
        # trg_seqs = [sent len, batch size]
        batch_size = src_seqs.shape[1]
        max_len = trg_seqs.shape[0]
        trg_vocab_size = self.decoder.output_dim
        # tensor to store decoder outputs
        outputs = torch.zeros(max_len, batch_size, trg_vocab_size).to(self.device)
        # hidden used as the initial hidden state of the decoder
        # encoder_outputs used to compute context
        encoder_outputs, hidden = self.encoder(src_seqs, src_lengths)
        # first input to the decoder is the <sos> tokens
        output = trg_seqs[0, :]

        for t in range(1, max_len): # skip sos
            output, hidden, _ = self.decoder(output, hidden, encoder_outputs)
            outputs[t] = output
            teacher_force = random.random() < self.teacher_forcing_ratio
            output = (trg_seqs[t] if teacher_force else output.max(1)[1])
        return outputs

    def predict(self, src_seqs, src_lengths, max_trg_len=30, start_ix=1):
        max_src_len = src_seqs.shape[0]
        batch_size = src_seqs.shape[1]
        trg_vocab_size = self.decoder.output_dim
        outputs = torch.zeros(max_trg_len, batch_size, trg_vocab_size).to(self.device)
        encoder_outputs, hidden = self.encoder(src_seqs, src_lengths)
        output = torch.LongTensor([start_ix] * batch_size).to(self.device)
        attn_weights = torch.zeros((max_trg_len, batch_size, max_src_len))
        for t in range(1, max_trg_len):
            output, hidden, attn_weight = self.decoder(output, hidden, encoder_outputs)
            outputs[t] = output
            output = output.max(1)[1]
            #attn_weights[t] = attn_weight
        return outputs, attn_weights
訓練神經網絡

訓練過程包括定義損失函數,優化器,數據處理,梯隊降低等過程。因爲網絡中tensor型狀爲(sentence len, batch, embedding), 而加載的數據形狀爲(batch, sentence len, embedding),所以有些地方須要進行轉置。

定義網絡,輔助類等代碼以下所示:

# 數據獲取輔助類
data = Dataset()
en=Encoder(200,64) ##詞向量維度200,rnn隱單元64
de=Decoder(9133,200,64) ##詞袋大小9133,詞向量維度200,rnn隱單元64
network = Net(en,de,device) ##定義Seq2Seq實例
loss_fn = nn.CrossEntropyLoss() ##使用交叉熵損失函數

optimizer = Adam(network.parameters()) ##使用Adam優化器

model = Model(data)
訓練過程以下所示:
lowest_loss = 10
# 獲得訓練和測試的數據
for epoch in range(args.EPOCHS):
    network.train()
    
    # 獲得訓練和測試的數據
    x_train, y_train, x_test, y_test = data.next_batch(args.BATCH)  # 讀取數據; shape:(sen_len,batch,embedding)
    #x_train shape: (batch,sen_len,embed_dim)
    #y_train shape: (batch,sen_len)
    batch_len = y_train.shape[0]
    #input_lengths = [30 for i in range(batch_len)] ## batch內每一個句子的長度
    input_lengths = x_train[:,-1,0]
    input_lengths = input_lengths.tolist()
    #input_lengths = list(map(lambda x: int(x),input_lengths))
    input_lengths = [int(x) for x in input_lengths]
    y_lengths = y_train[:,-1]
    y_lengths = y_lengths.tolist()
    
    x_train = x_train[:,:-1,:] ## 除去長度信息
    x_train = torch.from_numpy(x_train) #shape:(batch,sen_len,embedding)
    x_train = x_train.float().to(device) 
    y_train = y_train[:,:-1] ## 除去長度信息
    y_train = torch.from_numpy(y_train) #shape:(batch,sen_len)
    y_train = torch.LongTensor(y_train)
    y_train = y_train.to(device) 

    seq_pairs = sorted(zip(x_train.contiguous(), y_train.contiguous(),input_lengths), key=lambda x: x[2], reverse=True)
    #input_lengths = sorted(input_lengths, key=lambda x: input_lengths, reverse=True)
    x_train, y_train,input_lengths = zip(*seq_pairs)
    x_train = torch.stack(x_train,dim=0).permute(1,0,2).contiguous()
    y_train = torch.stack(y_train,dim=0).permute(1,0).contiguous()

    outputs = network(x_train,input_lengths,y_train)
    
    #_, prediction = torch.max(outputs.data, 2)
        
    optimizer.zero_grad()
    outputs = outputs.float()
    # calculate the loss according to labels
    loss = loss_fn(outputs.view(-1, outputs.shape[2]), y_train.view(-1))

    # backward transmit loss
    loss.backward()
    # adjust parameters using Adam
    optimizer.step()
    print(loss)

    # 若測試準確率高於當前最高準確率,則保存模型

    if loss < lowest_loss:
        lowest_loss = loss
        model.save_model(network, MODEL_PATH, overwrite=True)
        print("step %d, best lowest_loss %g" % (epoch, lowest_loss))
    print(str(epoch) + "/" + str(args.EPOCHS))
小結

經過使用Seq2Seq + Attention模型,咱們完成了使用神經網絡對對聯的任務。通過十餘個週期的訓練後,神經網絡將會對出與上聯字數相同的下聯,可是,若要對出工整的對聯,還需訓練更多的週期,讀者也能夠嘗試其餘的方法來提升對仗的工整性。


體驗對對聯Demo: https://www.flyai.com/couplets
獲取更多項目樣例開源代碼 請PC端訪問:www.flyai.com

微信公衆號條圖.png

相關文章
相關標籤/搜索