Matlab裏作多給軸的函數很直接,雙軸是plotyy, 三軸是plotyyy, 四軸是plot4y,更多應該是multiplotyyy。canvas
而matplotlib彷佛能夠用figure.add_axes()來實現,探索中……微信
公衆號「Matplotlib小講堂」(微信號:Matplotlibclass)一篇文章介紹了Matplotlib的圖層,結合本身的理解,摘要總結以下app
圖層可分爲四種函數
【2018-5-14】
多軸的繪製要用到有兩種方法能夠實現,一是用主軸和寄生軸的方法,即mpl_toolkits.axisartist.parasite_axes裏的HostAxes,和ParasiteAxes。 另外一種是用twinx(),結合mpl_toolkits.axes_grid1裏的host_subplot。 這裏用寄生軸的方法實現。this
首先是要建立主軸用HostAxes(figure,[ 左,下,寬,高 ]) 而後寄生出獨立的y軸來,並共享x軸。獨立的y軸對應獨立的曲線 將寄生軸加入主軸的列表spa
第一根寄生軸能夠直接借用原座標的右軸,因此不須要新增軸 若是須要兩個以上的y軸,第三個y軸就要新建固定軸了,要用到get_grid_helper().new_fixed_axis 設置第三及更多Y軸的偏移量 將主軸裝載到figure上 設置軸的外面特性,好比顏色,刻度範圍等code
from mpl_toolkits.axisartist.parasite_axes import HostAxes, ParasiteAxes import matplotlib.pyplot as plt import numpy as np fig = plt.figure(1) #定義figure,(1)中的1是什麼 ax_cof = HostAxes(fig, [0, 0, 0.9, 0.9]) #用[left, bottom, weight, height]的方式定義axes,0 <= l,b,w,h <= 1 #parasite addtional axes, share x ax_temp = ParasiteAxes(ax_cof, sharex=ax_cof) ax_load = ParasiteAxes(ax_cof, sharex=ax_cof) ax_cp = ParasiteAxes(ax_cof, sharex=ax_cof) ax_wear = ParasiteAxes(ax_cof, sharex=ax_cof) #append axes ax_cof.parasites.append(ax_temp) ax_cof.parasites.append(ax_load) ax_cof.parasites.append(ax_cp) ax_cof.parasites.append(ax_wear) #invisible right axis of ax_cof ax_cof.axis['right'].set_visible(False) ax_cof.axis['top'].set_visible(False) ax_temp.axis['right'].set_visible(True) ax_temp.axis['right'].major_ticklabels.set_visible(True) ax_temp.axis['right'].label.set_visible(True) #set label for axis ax_cof.set_ylabel('cof') ax_cof.set_xlabel('Distance (m)') ax_temp.set_ylabel('Temperature') ax_load.set_ylabel('load') ax_cp.set_ylabel('CP') ax_wear.set_ylabel('Wear') load_axisline = ax_load.get_grid_helper().new_fixed_axis cp_axisline = ax_cp.get_grid_helper().new_fixed_axis wear_axisline = ax_wear.get_grid_helper().new_fixed_axis ax_load.axis['right2'] = load_axisline(loc='right', axes=ax_load, offset=(40,0)) ax_cp.axis['right3'] = cp_axisline(loc='right', axes=ax_cp, offset=(80,0)) ax_wear.axis['right4'] = wear_axisline(loc='right', axes=ax_wear, offset=(120,0)) fig.add_axes(ax_cof) ''' #set limit of x, y ax_cof.set_xlim(0,2) ax_cof.set_ylim(0,3) ''' curve_cof, = ax_cof.plot([0, 1, 2], [0, 1, 2], label="CoF", color='black') curve_temp, = ax_temp.plot([0, 1, 2], [0, 3, 2], label="Temp", color='red') curve_load, = ax_load.plot([0, 1, 2], [1, 2, 3], label="Load", color='green') curve_cp, = ax_cp.plot([0, 1, 2], [0, 40, 25], label="CP", color='pink') curve_wear, = ax_wear.plot([0, 1, 2], [25, 18, 9], label="Wear", color='blue') ax_temp.set_ylim(0,4) ax_load.set_ylim(0,4) ax_cp.set_ylim(0,50) ax_wear.set_ylim(0,30) ax_cof.legend() #軸名稱,刻度值的顏色 #ax_cof.axis['left'].label.set_color(ax_cof.get_color()) ax_temp.axis['right'].label.set_color('red') ax_load.axis['right2'].label.set_color('green') ax_cp.axis['right3'].label.set_color('pink') ax_wear.axis['right4'].label.set_color('blue') ax_temp.axis['right'].major_ticks.set_color('red') ax_load.axis['right2'].major_ticks.set_color('green') ax_cp.axis['right3'].major_ticks.set_color('pink') ax_wear.axis['right4'].major_ticks.set_color('blue') ax_temp.axis['right'].major_ticklabels.set_color('red') ax_load.axis['right2'].major_ticklabels.set_color('green') ax_cp.axis['right3'].major_ticklabels.set_color('pink') ax_wear.axis['right4'].major_ticklabels.set_color('blue') ax_temp.axis['right'].line.set_color('red') ax_load.axis['right2'].line.set_color('green') ax_cp.axis['right3'].line.set_color('pink') ax_wear.axis['right4'].line.set_color('blue') plt.show()
結果是這樣的:blog
如下是摸索過程當中的練習,給本身紀錄一下。
用一個修改了的官方例子來講明一下, jupyter notebook 代碼以下:
%matplotlib inline
from mpl_toolkits.axisartist.parasite_axes import HostAxes, ParasiteAxes
import matplotlib.pyplot as pltip
fig = plt.figure(1)ci
host = HostAxes(fig, [0.15, 0.1, 0.65, 0.8])
par1 = ParasiteAxes(host, sharex=host)
par2 = ParasiteAxes(host, sharex=host)
host.parasites.append(par1)
host.parasites.append(par2)
host.set_ylabel('Denstity')
host.set_xlabel('Distance')
host.axis['right'].set_visible(False)
par1.axis['right'].set_visible(True)
par1.set_ylabel('Temperature')
par1.axis['right'].major_ticklabels.set_visible(True)
par1.axis['right'].label.set_visible(True)
par2.set_ylabel('Velocity')
offset = (60, 0)
new_axisline = par2._grid_helper.new_fixed_axis # "_grid_helper"與"get_grid_helper()"等價,能夠代替
#new_axisline = par2.get_grid_helper().new_fixed_axis # 用"get_grid_helper()"代替,結果同樣,區別目前不清楚
par2.axis['right2'] = new_axisline(loc='right', axes=par2, offset=offset)
fig.add_axes(host)
host.set_xlim(0,2)
host.set_ylim(0,2)
host.set_xlabel('Distance')
host.set_ylabel('Density')
host.set_ylabel('Temperature')
p1, = host.plot([0, 1, 2], [0, 1, 2], label="Density")
p2, = par1.plot([0, 1, 2], [0, 3, 2], label="Temperature")
p3, = par2.plot([0, 1, 2], [50, 30, 15], label="Velocity")
par1.set_ylim(0,4)
par2.set_ylim(1,60)
host.legend()
#軸名稱,刻度值的顏色
host.axis['left'].label.set_color(p1.get_color())
par1.axis['right'].label.set_color(p2.get_color())
par2.axis['right2'].label.set_color(p3.get_color())
par2.axis['right2'].major_ticklabels.set_color(p3.get_color()) #刻度值顏色
par2.axis['right2'].set_axisline_style('-|>',size=1.5) #軸的形狀色
par2.axis['right2'].line.set_color(p3.get_color()) #軸的顏色
結果圖是這樣:
嘗試引入浮動座標軸來實現多軸,但貌似浮動的縱軸若是在座標邊界右邊就不能顯示出來了,
update: 浮動軸應該是隻能在原座標內顯示,要增長縱軸,像matplab中plotyyy函數那樣的縱軸要用固定軸,與浮動軸對應函數是ax.new_fixed_axis(location, offset)
代碼以下:
import mpl_toolkits.axisartist as AA import matplotlib.pyplot as plt %matplotlib inline fig = plt.figure(1) #定義figure,(1)中的1是什麼 ax = AA.Axes(fig, [0, 0, 0.9, 0.9]) #用[left, bottom, weight, height]的方式定義axes,0 <= l,b,w,h <= 1 fig.add_axes(ax) #用Subplot的方式定義 ax1 = AA.Subplot(fig,211) fig.add_axes(ax1) #控制,t,b,r,l軸的顯示與否 ax.axis["right"].set_visible(False) ax.axis["top"].set_visible(False) ax1.axis['bottom'].set_visible(False) ax1.axis['left'].set_visible(False) #浮動軸,nth_coord=0是橫軸,=1是縱軸,value是交叉點 ax.axis['x=0.5'] = ax.new_floating_axis(nth_coord=1, value=0.5) ax.axis['x=0.5'].set_axisline_style('->', size=1.5) #座標帶箭頭
#增長y軸,用new_fixed_axis(location, offset(右多少,上多少))
ax.axis['right2'] = ax.new_fixed_axis(loc='right',
offset=(50,0))
結果以下
試驗過程當中發現一隱藏功能
jupyter notebook 碼以下:
%matplotlib inline
import numpy as np import matplotlib.pyplot as plt fig = plt.figure() t = np.arange(0.0, 1.0, 0.01) s = np.sin(2 * np.pi * t) c = np.cos(2 * np.pi * t) ax1 = fig.add_axes([0, 0, 0.8, 0.5]) line1, = ax1.plot(t, s, color='blue', lw=2) ax2 = fig.add_axes([0, 0, 0.8, 0.5]) line2, = ax2.plot(t, c, color='blue', lw=2) plt.show()
執行後跳出一提醒:
X:\anaconda3\lib\site-packages\matplotlib\cbook\deprecation.py:106: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a
previous axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this
warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance. warnings.warn(message, mplDeprecation, stacklevel=1)
圖的效果是
由於參數同樣,把兩圖給合併顯示了,若是 ax2 = fig.add_axes([0, 0, 0.8, 0.5])中的l,b,w,h有一個不同,後定義的直接遮蓋前面定義,或加上去的axes