package com.java.collections.demo; import java.util.Arrays; import java.util.Collections; import java.util.List; public class Ctest01 { public static void main(String[] args) { List<String> list = Arrays.asList("6", "1", "3", "1","2"); Collections.sort(list);// <-- Here System.out.println(list.toString()); } }
執行main方法以後,輸出結果以下java
[1, 1, 2, 3, 6]
注:Arrays.asList() 返回的是ArrayList的實例對象數組
package java.util; public class Arrays { @SafeVarargs @SuppressWarnings("varargs") public static <T> List<T> asList(T... a) { return new ArrayList<>(a); } }
package java.util; public class Collections { @SuppressWarnings("unchecked") public static <T extends Comparable<? super T>> void sort(List<T> list) { list.sort(null);// <-- Here } }
package java.util; public class ArrayList<E> { @Override @SuppressWarnings("unchecked") public void sort(Comparator<? super E> c) { final int expectedModCount = modCount; Arrays.sort((E[]) elementData, 0, size, c);// <-- Here if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } }
package java.util; public class Arrays { public static <T> void sort(T[] a, int fromIndex, int toIndex, Comparator<? super T> c) { if (c == null) { sort(a, fromIndex, toIndex); // <-- Here } else { rangeCheck(a.length, fromIndex, toIndex); if (LegacyMergeSort.userRequested) legacyMergeSort(a, fromIndex, toIndex, c); else TimSort.sort(a, fromIndex, toIndex, c, null, 0, 0); } } public static void sort(Object[] a, int fromIndex, int toIndex) { // 檢查參數的合理性 rangeCheck(a.length, fromIndex, toIndex); // LegacyMergeSort.userRequested 默認爲false if (LegacyMergeSort.userRequested) { // 使用一種老的歸併排序 legacyMergeSort(a, fromIndex, toIndex); } else { ComparableTimSort.sort(a, fromIndex, toIndex, null, 0, 0); // <-- Here } } }
package java.util; class ComparableTimSort { static void sort(Object[] a, int lo, int hi, Object[] work, int workBase, int workLen) { assert a != null && lo >= 0 && lo <= hi && hi <= a.length; int nRemaining = hi - lo; if (nRemaining < 2) { // 若是待排序的數組爲空或是元素只有一個,不用排序,直接返回 return; // Arrays of size 0 and 1 are always sorted } // If array is small, do a "mini-TimSort" with no merges if (nRemaining < MIN_MERGE) { // 若是待排序的數組元素數量較少,就使用二叉排序 int initRunLen = countRunAndMakeAscending(a, lo, hi); binarySort(a, lo, hi, lo + initRunLen); return; } /** * March over the array once, left to right, finding natural runs, * extending short natural runs to minRun elements, and merging runs * to maintain stack invariant. */ ComparableTimSort ts = new ComparableTimSort(a, work, workBase, workLen); int minRun = minRunLength(nRemaining); do { // Identify next run int runLen = countRunAndMakeAscending(a, lo, hi); // If run is short, extend to min(minRun, nRemaining) if (runLen < minRun) { int force = nRemaining <= minRun ? nRemaining : minRun; binarySort(a, lo, lo + force, lo + runLen); runLen = force; } // Push run onto pending-run stack, and maybe merge ts.pushRun(lo, runLen); ts.mergeCollapse(); // Advance to find next run lo += runLen; nRemaining -= runLen; } while (nRemaining != 0); // Merge all remaining runs to complete sort assert lo == hi; ts.mergeForceCollapse(); assert ts.stackSize == 1; } |
package com.java.collections.demo; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.List; public class Ctest01 { public static void main(String[] args) { List<String> list = Arrays.asList("6", "1", "3", "1","2"); Collections.sort(list, new Comparator<String>() { @Override public int compare(String o1, String o2) { // TODO Auto-generated method stub return Integer.valueOf(o1) - Integer.valueOf(o2); } });// <-- Here System.out.println(list.toString()); } }
package java.util; public class Collections { @SuppressWarnings({"unchecked", "rawtypes"}) public static <T> void sort(List<T> list, Comparator<? super T> c) { list.sort(c);// <-- Here } }
package java.util; public class ArrayList<E> { @Override @SuppressWarnings("unchecked") public void sort(Comparator<? super E> c) { final int expectedModCount = modCount; Arrays.sort((E[]) elementData, 0, size, c);// <-- Here if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } }
package java.util; public class Arrays { public static <T> void sort(T[] a, int fromIndex, int toIndex, Comparator<? super T> c) { if (c == null) { sort(a, fromIndex, toIndex); } else { rangeCheck(a.length, fromIndex, toIndex); if (LegacyMergeSort.userRequested) legacyMergeSort(a, fromIndex, toIndex, c); else TimSort.sort(a, fromIndex, toIndex, c, null, 0, 0); // <-- Here } } }
package java.util; class TimSort<T> { static <T> void sort(T[] a, int lo, int hi, Comparator<? super T> c, T[] work, int workBase, int workLen) { assert c != null && a != null && lo >= 0 && lo <= hi && hi <= a.length; int nRemaining = hi - lo; if (nRemaining < 2) return; // Arrays of size 0 and 1 are always sorted // If array is small, do a "mini-TimSort" with no merges if (nRemaining < MIN_MERGE) { int initRunLen = countRunAndMakeAscending(a, lo, hi, c); binarySort(a, lo, hi, lo + initRunLen, c); return; } /** * March over the array once, left to right, finding natural runs, * extending short natural runs to minRun elements, and merging runs * to maintain stack invariant. */ TimSort<T> ts = new TimSort<>(a, c, work, workBase, workLen); int minRun = minRunLength(nRemaining); do { // Identify next run int runLen = countRunAndMakeAscending(a, lo, hi, c); // If run is short, extend to min(minRun, nRemaining) if (runLen < minRun) { int force = nRemaining <= minRun ? nRemaining : minRun; binarySort(a, lo, lo + force, lo + runLen, c); runLen = force; } // Push run onto pending-run stack, and maybe merge ts.pushRun(lo, runLen); ts.mergeCollapse(); // Advance to find next run lo += runLen; nRemaining -= runLen; } while (nRemaining != 0); // Merge all remaining runs to complete sort assert lo == hi; ts.mergeForceCollapse(); assert ts.stackSize == 1; } }