以前公司由於使用線程池習慣很差,致使線程池負載負載太高。觸發了拒絕策略,致使大量任務丟失。而並無對這個狀況進行監控,致使業務出現故障以後才發現拋出了拒絕異常。因此有必要對大量使用線程池的項目進行監控,而且最好能在不停機的狀況下對線程池的參數進行修改,由此咱們能夠用線程池的hook方法去對線程池的狀態進行埋點,而且經過Actuator作可視化監控,自定義Endpoint去修改線程池內部參數,實現能夠動態修改線程池參數。html
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
複製代碼
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.Date;
import java.util.List;
import java.util.Objects;
import java.util.concurrent.*;
import java.util.concurrent.atomic.AtomicInteger;
/** * 繼承ThreadPoolExecutor類,覆蓋了shutdown(), shutdownNow(), beforeExecute() 和 afterExecute() * 方法來統計線程池的執行狀況 */
public class ThreadPoolMonitor extends ThreadPoolExecutor {
private static final Logger LOGGER = LoggerFactory.getLogger(ThreadPoolMonitor.class);
/** * 保存任務開始執行的時間,當任務結束時,用任務結束時間減去開始時間計算任務執行時間 */
private final ConcurrentHashMap<String, Date> startTimes;
/** * 線程池名稱,通常以業務名稱命名,方便區分 */
private final String poolName;
private long totalDiff;
/** * 調用父類的構造方法,並初始化HashMap和線程池名稱 * * @param corePoolSize 線程池核心線程數 * @param maximumPoolSize 線程池最大線程數 * @param keepAliveTime 線程的最大空閒時間 * @param unit 空閒時間的單位 * @param workQueue 保存被提交任務的隊列 * @param poolName 線程池名稱 */
public ThreadPoolMonitor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, String poolName) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
new EventThreadFactory(poolName), poolName);
}
/** * 調用父類的構造方法,並初始化HashMap和線程池名稱 * * @param corePoolSize 線程池核心線程數 * @param maximumPoolSize 線程池最大線程數 * @param keepAliveTime 線程的最大空閒時間 * @param unit 空閒時間的單位 * @param workQueue 保存被提交任務的隊列 * @param threadFactory 線程工廠 * @param poolName 線程池名稱 */
public ThreadPoolMonitor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, String poolName) {
super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory);
this.startTimes = new ConcurrentHashMap<>();
this.poolName = poolName;
}
/** * 線程池延遲關閉時(等待線程池裏的任務都執行完畢),統計線程池狀況 */
@Override
public void shutdown() {
// 統計已執行任務、正在執行任務、未執行任務數量
LOGGER.info("{} Going to shutdown. Executed tasks: {}, Running tasks: {}, Pending tasks: {}",
this.poolName, this.getCompletedTaskCount(), this.getActiveCount(), this.getQueue().size());
super.shutdown();
}
/** * 線程池當即關閉時,統計線程池狀況 */
@Override
public List<Runnable> shutdownNow() {
// 統計已執行任務、正在執行任務、未執行任務數量
LOGGER.info("{} Going to immediately shutdown. Executed tasks: {}, Running tasks: {}, Pending tasks: {}",
this.poolName, this.getCompletedTaskCount(), this.getActiveCount(), this.getQueue().size());
return super.shutdownNow();
}
/** * 任務執行以前,記錄任務開始時間 */
@Override
protected void beforeExecute(Thread t, Runnable r) {
startTimes.put(String.valueOf(r.hashCode()), new Date());
}
/** * 任務執行以後,計算任務結束時間 */
@Override
protected void afterExecute(Runnable r, Throwable t) {
Date startDate = startTimes.remove(String.valueOf(r.hashCode()));
Date finishDate = new Date();
long diff = finishDate.getTime() - startDate.getTime();
totalDiff += diff;
// 統計任務耗時、初始線程數、核心線程數、正在執行的任務數量、
// 已完成任務數量、任務總數、隊列裏緩存的任務數量、池中存在的最大線程數、
// 最大容許的線程數、線程空閒時間、線程池是否關閉、線程池是否終止
LOGGER.info("{}-pool-monitor: " +
"Duration: {} ms, PoolSize: {}, CorePoolSize: {}, Active: {}, " +
"Completed: {}, Task: {}, Queue: {}, LargestPoolSize: {}, " +
"MaximumPoolSize: {}, KeepAliveTime: {}, isShutdown: {}, isTerminated: {}",
this.poolName,
diff, this.getPoolSize(), this.getCorePoolSize(), this.getActiveCount(),
this.getCompletedTaskCount(), this.getTaskCount(), this.getQueue().size(), this.getLargestPoolSize(),
this.getMaximumPoolSize(), this.getKeepAliveTime(TimeUnit.MILLISECONDS), this.isShutdown(), this.isTerminated());
}
/** * 生成線程池所用的線程,只是改寫了線程池默認的線程工廠,傳入線程池名稱,便於問題追蹤 */
static class EventThreadFactory implements ThreadFactory {
private static final AtomicInteger POOL_NUMBER = new AtomicInteger(1);
private final ThreadGroup group;
private final AtomicInteger threadNumber = new AtomicInteger(1);
private final String namePrefix;
/** * 初始化線程工廠 * * @param poolName 線程池名稱 */
EventThreadFactory(String poolName) {
SecurityManager s = System.getSecurityManager();
group = Objects.nonNull(s) ? s.getThreadGroup() : Thread.currentThread().getThreadGroup();
namePrefix = poolName + "-pool-" + POOL_NUMBER.getAndIncrement() + "-thread-";
}
@Override
public Thread newThread(Runnable r) {
Thread t = new Thread(group, r, namePrefix + threadNumber.getAndIncrement(), 0);
if (t.isDaemon()) {
t.setDaemon(false);
}
if (t.getPriority() != Thread.NORM_PRIORITY) {
t.setPriority(Thread.NORM_PRIORITY);
}
return t;
}
}
public long getTotalDiff() {
return totalDiff;
}
}
複製代碼
這裏咱們直接修改LinkedBlockingQueue的代碼,把capacity去掉final,變成一個可變參數。再新增get和set方法。java
/** * The type Resizeable blocking queue. * * @param <E> the type parameter */
public class ResizeableBlockingQueue<E> extends AbstractQueue<E> implements BlockingQueue<E>, java.io.Serializable {
private static final long serialVersionUID = -1232131234709194L;
/* * 基於LinkedBlockingQueue 實現的一個可變隊列容量的阻塞隊列 * * */
/** * The type Node. * * @param <E> the type parameter */
static class Node<E> {
E item;
Node<E> next;
Node(E x) { item = x; }
}
private int capacity;
private final AtomicInteger count = new AtomicInteger();
transient Node<E> head;
private transient Node<E> last;
private final ReentrantLock takeLock = new ReentrantLock();
private final Condition notEmpty = takeLock.newCondition();
private final ReentrantLock putLock = new ReentrantLock();
private final Condition notFull = putLock.newCondition();
/** * Gets capacity. * * @return the capacity */
public int getCapacity() {
return capacity;
}
/** * Sets capacity. * * @param capacity the capacity */
public void setCapacity(int capacity) {
this.capacity = capacity;
}
private void signalNotEmpty() {
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {
notEmpty.signal();
} finally {
takeLock.unlock();
}
}
private void signalNotFull() {
final ReentrantLock putLock = this.putLock;
putLock.lock();
try {
notFull.signal();
} finally {
putLock.unlock();
}
}
private void enqueue(Node<E> node) {
// assert putLock.isHeldByCurrentThread();
// assert last.next == null;
last = last.next = node;
}
private E dequeue() {
// assert takeLock.isHeldByCurrentThread();
// assert head.item == null;
Node<E> h = head;
Node<E> first = h.next;
h.next = h; // help GC
head = first;
E x = first.item;
first.item = null;
return x;
}
/** * Fully lock. */
void fullyLock() {
putLock.lock();
takeLock.lock();
}
/** * Fully unlock. */
void fullyUnlock() {
takeLock.unlock();
putLock.unlock();
}
/** * Instantiates a new Resizeable blocking queue. */
public ResizeableBlockingQueue() {
this(Integer.MAX_VALUE);
}
/** * Instantiates a new Resizeable blocking queue. * * @param capacity the capacity */
public ResizeableBlockingQueue(int capacity) {
if (capacity <= 0) {
throw new IllegalArgumentException();
}
this.capacity = capacity;
last = head = new Node<E>(null);
}
/** * Instantiates a new Resizeable blocking queue. * * @param c the c */
public ResizeableBlockingQueue(Collection<? extends E> c) {
this(Integer.MAX_VALUE);
final ReentrantLock putLock = this.putLock;
putLock.lock(); // Never contended, but necessary for visibility
try {
int n = 0;
for (E e : c) {
if (e == null) {
throw new NullPointerException();
}
if (n == capacity) {
throw new IllegalStateException("Queue full");
}
enqueue(new Node<E>(e));
++n;
}
count.set(n);
} finally {
putLock.unlock();
}
}
// this doc comment is overridden to remove the reference to collections
// greater in size than Integer.MAX_VALUE
@Override
public int size() {
return count.get();
}
// this doc comment is a modified copy of the inherited doc comment,
// without the reference to unlimited queues.
@Override
public int remainingCapacity() {
return capacity - count.get();
}
@Override
public void put(E e) throws InterruptedException {
if (e == null) {
throw new NullPointerException();
}
// Note: convention in all put/take/etc is to preset local var
// holding count negative to indicate failure unless set.
int c = -1;
Node<E> node = new Node<E>(e);
final ReentrantLock putLock = this.putLock;
final AtomicInteger count = this.count;
putLock.lockInterruptibly();
try {
/* * Note that count is used in wait guard even though it is * not protected by lock. This works because count can * only decrease at this point (all other puts are shut * out by lock), and we (or some other waiting put) are * signalled if it ever changes from capacity. Similarly * for all other uses of count in other wait guards. */
while (count.get() == capacity) {
notFull.await();
}
enqueue(node);
c = count.getAndIncrement();
if (c + 1 < capacity) {
notFull.signal();
}
} finally {
putLock.unlock();
}
if (c == 0) {
signalNotEmpty();
}
}
@Override
public boolean offer(E e, long timeout, TimeUnit unit) throws InterruptedException {
if (e == null) {
throw new NullPointerException();
}
long nanos = unit.toNanos(timeout);
int c = -1;
final ReentrantLock putLock = this.putLock;
final AtomicInteger count = this.count;
putLock.lockInterruptibly();
try {
while (count.get() == capacity) {
if (nanos <= 0) {
return false;
}
nanos = notFull.awaitNanos(nanos);
}
enqueue(new Node<E>(e));
c = count.getAndIncrement();
if (c + 1 < capacity) {
notFull.signal();
}
} finally {
putLock.unlock();
}
if (c == 0) {
signalNotEmpty();
}
return true;
}
@Override
public boolean offer(E e) {
if (e == null) {
throw new NullPointerException();
}
final AtomicInteger count = this.count;
if (count.get() == capacity) {
return false;
}
int c = -1;
Node<E> node = new Node<E>(e);
final ReentrantLock putLock = this.putLock;
putLock.lock();
try {
if (count.get() < capacity) {
enqueue(node);
c = count.getAndIncrement();
if (c + 1 < capacity) {
notFull.signal();
}
}
} finally {
putLock.unlock();
}
if (c == 0) {
signalNotEmpty();
}
return c >= 0;
}
@Override
public E take() throws InterruptedException {
E x;
int c = -1;
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly();
try {
while (count.get() == 0) {
notEmpty.await();
}
x = dequeue();
c = count.getAndDecrement();
if (c > 1) {
notEmpty.signal();
}
} finally {
takeLock.unlock();
}
if (c == capacity) {
signalNotFull();
}
return x;
}
@Override
public E poll(long timeout, TimeUnit unit) throws InterruptedException {
E x = null;
int c = -1;
long nanos = unit.toNanos(timeout);
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly();
try {
while (count.get() == 0) {
if (nanos <= 0) {
return null;
}
nanos = notEmpty.awaitNanos(nanos);
}
x = dequeue();
c = count.getAndDecrement();
if (c > 1) {
notEmpty.signal();
}
} finally {
takeLock.unlock();
}
if (c == capacity) {
signalNotFull();
}
return x;
}
@Override
public E poll() {
final AtomicInteger count = this.count;
if (count.get() == 0) {
return null;
}
E x = null;
int c = -1;
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {
if (count.get() > 0) {
x = dequeue();
c = count.getAndDecrement();
if (c > 1) {
notEmpty.signal();
}
}
} finally {
takeLock.unlock();
}
if (c == capacity) {
signalNotFull();
}
return x;
}
@Override
public E peek() {
if (count.get() == 0) {
return null;
}
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {
Node<E> first = head.next;
if (first == null) {
return null;
} else {
return first.item;
}
} finally {
takeLock.unlock();
}
}
void unlink(Node<E> p, Node<E> trail) {
// assert isFullyLocked();
// p.next is not changed, to allow iterators that are
// traversing p to maintain their weak-consistency guarantee.
p.item = null;
trail.next = p.next;
if (last == p) {
last = trail;
}
if (count.getAndDecrement() == capacity) {
notFull.signal();
}
}
@Override
public boolean remove(Object o) {
if (o == null) {
return false;
}
fullyLock();
try {
for (Node<E> trail = head, p = trail.next;
p != null;
trail = p, p = p.next) {
if (o.equals(p.item)) {
unlink(p, trail);
return true;
}
}
return false;
} finally {
fullyUnlock();
}
}
@Override
public boolean contains(Object o) {
if (o == null) {
return false;
}
fullyLock();
try {
for (Node<E> p = head.next; p != null; p = p.next) {
if (o.equals(p.item)) {
return true;
}
}
return false;
} finally {
fullyUnlock();
}
}
@Override
public Object[] toArray() {
fullyLock();
try {
int size = count.get();
Object[] a = new Object[size];
int k = 0;
for (Node<E> p = head.next; p != null; p = p.next) {
a[k++] = p.item;
}
return a;
} finally {
fullyUnlock();
}
}
@Override
@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {
fullyLock();
try {
int size = count.get();
if (a.length < size) {
a = (T[])java.lang.reflect.Array.newInstance
(a.getClass().getComponentType(), size);
}
int k = 0;
for (Node<E> p = head.next; p != null; p = p.next) {
a[k++] = (T)p.item;
}
if (a.length > k) {
a[k] = null;
}
return a;
} finally {
fullyUnlock();
}
}
@Override
public String toString() {
fullyLock();
try {
Node<E> p = head.next;
if (p == null) {
return "[]";
}
StringBuilder sb = new StringBuilder();
sb.append('[');
for (;;) {
E e = p.item;
sb.append(e == this ? "(this Collection)" : e);
p = p.next;
if (p == null) {
return sb.append(']').toString();
}
sb.append(',').append(' ');
}
} finally {
fullyUnlock();
}
}
@Override
public void clear() {
fullyLock();
try {
for (Node<E> p, h = head; (p = h.next) != null; h = p) {
h.next = h;
p.item = null;
}
head = last;
// assert head.item == null && head.next == null;
if (count.getAndSet(0) == capacity) {
notFull.signal();
}
} finally {
fullyUnlock();
}
}
@Override
public int drainTo(Collection<? super E> c) {
return drainTo(c, Integer.MAX_VALUE);
}
@Override
public int drainTo(Collection<? super E> c, int maxElements) {
if (c == null) {
throw new NullPointerException();
}
if (c == this) {
throw new IllegalArgumentException();
}
if (maxElements <= 0) {
return 0;
}
boolean signalNotFull = false;
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {
int n = Math.min(maxElements, count.get());
// count.get provides visibility to first n Nodes
Node<E> h = head;
int i = 0;
try {
while (i < n) {
Node<E> p = h.next;
c.add(p.item);
p.item = null;
h.next = h;
h = p;
++i;
}
return n;
} finally {
// Restore invariants even if c.add() threw
if (i > 0) {
// assert h.item == null;
head = h;
signalNotFull = (count.getAndAdd(-i) == capacity);
}
}
} finally {
takeLock.unlock();
if (signalNotFull) {
signalNotFull();
}
}
}
@Override
public Iterator<E> iterator() {
return new Itr();
}
private class Itr implements Iterator<E> {
/* * Basic weakly-consistent iterator. At all times hold the next * item to hand out so that if hasNext() reports true, we will * still have it to return even if lost race with a take etc. */
private Node<E> current;
private Node<E> lastRet;
private E currentElement;
Itr() {
fullyLock();
try {
current = head.next;
if (current != null) {
currentElement = current.item;
}
} finally {
fullyUnlock();
}
}
@Override
public boolean hasNext() {
return current != null;
}
private Node<E> nextNode(Node<E> p) {
for (;;) {
Node<E> s = p.next;
if (s == p) {
return head.next;
}
if (s == null || s.item != null) {
return s;
}
p = s;
}
}
@Override
public E next() {
fullyLock();
try {
if (current == null) {
throw new NoSuchElementException();
}
E x = currentElement;
lastRet = current;
current = nextNode(current);
currentElement = (current == null) ? null : current.item;
return x;
} finally {
fullyUnlock();
}
}
@Override
public void remove() {
if (lastRet == null) {
throw new IllegalStateException();
}
fullyLock();
try {
Node<E> node = lastRet;
lastRet = null;
for (Node<E> trail = head, p = trail.next;
p != null;
trail = p, p = p.next) {
if (p == node) {
unlink(p, trail);
break;
}
}
} finally {
fullyUnlock();
}
}
}
/** * The type Lbq spliterator. * * @param <E> the type parameter */
static final class LBQSpliterator<E> implements Spliterator<E> {
static final int MAX_BATCH = 1 << 25; // max batch array size;
final ResizeableBlockingQueue<E> queue;
Node<E> current; // current node; null until initialized
int batch; // batch size for splits
boolean exhausted; // true when no more nodes
long est; // size estimate
LBQSpliterator(ResizeableBlockingQueue<E> queue) {
this.queue = queue;
this.est = queue.size();
}
@Override
public long estimateSize() { return est; }
@Override
public Spliterator<E> trySplit() {
Node<E> h;
final ResizeableBlockingQueue<E> q = this.queue;
int b = batch;
int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
if (!exhausted &&
((h = current) != null || (h = q.head.next) != null) &&
h.next != null) {
Object[] a = new Object[n];
int i = 0;
Node<E> p = current;
q.fullyLock();
try {
if (p != null || (p = q.head.next) != null) {
do {
if ((a[i] = p.item) != null) {
++i;
}
} while ((p = p.next) != null && i < n);
}
} finally {
q.fullyUnlock();
}
if ((current = p) == null) {
est = 0L;
exhausted = true;
}
else if ((est -= i) < 0L) {
est = 0L;
}
if (i > 0) {
batch = i;
return Spliterators.spliterator
(a, 0, i, Spliterator.ORDERED | Spliterator.NONNULL |
Spliterator.CONCURRENT);
}
}
return null;
}
@Override
public void forEachRemaining(Consumer<? super E> action) {
if (action == null) {
throw new NullPointerException();
}
final ResizeableBlockingQueue<E> q = this.queue;
if (!exhausted) {
exhausted = true;
Node<E> p = current;
do {
E e = null;
q.fullyLock();
try {
if (p == null) {
p = q.head.next;
}
while (p != null) {
e = p.item;
p = p.next;
if (e != null) {
break;
}
}
} finally {
q.fullyUnlock();
}
if (e != null) {
action.accept(e);
}
} while (p != null);
}
}
@Override
public boolean tryAdvance(Consumer<? super E> action) {
if (action == null) {
throw new NullPointerException();
}
final ResizeableBlockingQueue<E> q = this.queue;
if (!exhausted) {
E e = null;
q.fullyLock();
try {
if (current == null) {
current = q.head.next;
}
while (current != null) {
e = current.item;
current = current.next;
if (e != null) {
break;
}
}
} finally {
q.fullyUnlock();
}
if (current == null) {
exhausted = true;
}
if (e != null) {
action.accept(e);
return true;
}
}
return false;
}
@Override
public int characteristics() {
return Spliterator.ORDERED | Spliterator.NONNULL |
Spliterator.CONCURRENT;
}
}
public Spliterator<E> spliterator() {
return new LBQSpliterator<E>(this);
}
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
fullyLock();
try {
// Write out any hidden stuff, plus capacity
s.defaultWriteObject();
// Write out all elements in the proper order.
for (Node<E> p = head.next; p != null; p = p.next) {
s.writeObject(p.item);
}
// Use trailing null as sentinel
s.writeObject(null);
} finally {
fullyUnlock();
}
}
private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
// Read in capacity, and any hidden stuff
s.defaultReadObject();
count.set(0);
last = head = new Node<E>(null);
// Read in all elements and place in queue
for (;;) {
@SuppressWarnings("unchecked")
E item = (E)s.readObject();
if (item == null) {
break;
}
add(item);
}
}
}
複製代碼
編寫線程池工具類,經過Util去建立線程池,而且用HashMap去指向建立的線程池,以後能夠經過這個HashMap去獲取線程池。node
/** * The type Thread pool util. * 線程池工具類 */
@Component
public class ThreadPoolUtil {
/** * 經過Hash去指向建立的線程池,以後能夠經過這個HashMap去獲取線程池 */
private final HashMap<String, ThreadPoolMonitor> threadPoolExecutorHashMap = new HashMap<>();
/** * Creat thread pool thread pool monitor. * * 能夠自定義隊列類型的構造器 * * @param corePoolSize the core pool size * @param maximumPoolSize the maximum pool size * @param keepAliveTime the keep alive time * @param unit the unit * @param workQueue the work queue * @param poolName the pool name * @return the thread pool monitor */
public ThreadPoolMonitor creatThreadPool(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, String poolName) {
ThreadPoolMonitor threadPoolExecutor = new ThreadPoolMonitor(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, poolName);
threadPoolExecutorHashMap.put(poolName, threadPoolExecutor);
return threadPoolExecutor;
}
/** * Creat thread pool thread pool monitor. * * ResizeableBlockingQueue 裏面修改了capacity參數 * 能夠經過set方法去修改隊列的大小 * 使用默認隊列的構造器 * * @param corePoolSize the core pool size * @param maximumPoolSize the maximum pool size * @param keepAliveTime the keep alive time * @param unit the unit * @param queueSize the queue size * @param poolName the pool name * @return the thread pool monitor */
public ThreadPoolMonitor creatThreadPool(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, int queueSize, String poolName) {
ThreadPoolMonitor threadPoolExecutor = new ThreadPoolMonitor(corePoolSize, maximumPoolSize, keepAliveTime, unit, new ResizeableBlockingQueue<>(queueSize), poolName);
threadPoolExecutorHashMap.put(poolName, threadPoolExecutor);
return threadPoolExecutor;
}
/** * Gets thread pool executor hash map. * * @return the thread pool executor hash map */
public HashMap<String, ThreadPoolMonitor> getThreadPoolExecutorHashMap() {
return threadPoolExecutorHashMap;
}
}
複製代碼
實現線程池信息的實體類用來EndPoint返回數據git
ThreadPoolDetailInfo.javagithub
/** * The type Thread pool detail info. */
public class ThreadPoolDetailInfo {
private String threadPoolName;
private Integer poolSize;
private Integer corePoolSize;
private Integer largestPoolSize;
private Integer maximumPoolSize;
private long completedTaskCount;
private Integer active;
private long task;
private long keepAliveTime;
private String activePercent;
private Integer queueCapacity;
private Integer queueSize;
private long avgDiff;
/** * Instantiates a new Thread pool detail info. * * @param threadPoolName the thread pool name * @param poolSize the pool size * @param corePoolSize the core pool size * @param largestPoolSize the largest pool size * @param maximumPoolSize the maximum pool size * @param completedTaskCount the completed task count * @param active the active * @param task the task * @param keepAliveTime the keep alive time * @param activePercent the active percent * @param queueCapacity the queue capacity * @param queueSize the queue size * @param avgDiff the avg diff */
public ThreadPoolDetailInfo(String threadPoolName, Integer poolSize, Integer corePoolSize, Integer largestPoolSize, Integer maximumPoolSize, long completedTaskCount, Integer active, long task, long keepAliveTime, String activePercent, Integer queueCapacity, Integer queueSize, long avgDiff) {
this.threadPoolName = threadPoolName;
this.poolSize = poolSize;
this.corePoolSize = corePoolSize;
this.largestPoolSize = largestPoolSize;
this.maximumPoolSize = maximumPoolSize;
this.completedTaskCount = completedTaskCount;
this.active = active;
this.task = task;
this.keepAliveTime = keepAliveTime;
this.activePercent = activePercent;
this.queueCapacity = queueCapacity;
this.queueSize = queueSize;
this.avgDiff = avgDiff;
}
/** * Gets thread pool name. * * @return the thread pool name */
public String getThreadPoolName() {
return threadPoolName;
}
/** * Sets thread pool name. * * @param threadPoolName the thread pool name */
public void setThreadPoolName(String threadPoolName) {
this.threadPoolName = threadPoolName;
}
/** * Gets pool size. * * @return the pool size */
public Integer getPoolSize() {
return poolSize;
}
/** * Sets pool size. * * @param poolSize the pool size */
public void setPoolSize(Integer poolSize) {
this.poolSize = poolSize;
}
/** * Gets core pool size. * * @return the core pool size */
public Integer getCorePoolSize() {
return corePoolSize;
}
/** * Sets core pool size. * * @param corePoolSize the core pool size */
public void setCorePoolSize(Integer corePoolSize) {
this.corePoolSize = corePoolSize;
}
/** * Gets largest pool size. * * @return the largest pool size */
public Integer getLargestPoolSize() {
return largestPoolSize;
}
/** * Sets largest pool size. * * @param largestPoolSize the largest pool size */
public void setLargestPoolSize(Integer largestPoolSize) {
this.largestPoolSize = largestPoolSize;
}
/** * Gets maximum pool size. * * @return the maximum pool size */
public Integer getMaximumPoolSize() {
return maximumPoolSize;
}
/** * Sets maximum pool size. * * @param maximumPoolSize the maximum pool size */
public void setMaximumPoolSize(Integer maximumPoolSize) {
this.maximumPoolSize = maximumPoolSize;
}
/** * Gets completed task count. * * @return the completed task count */
public long getCompletedTaskCount() {
return completedTaskCount;
}
/** * Sets completed task count. * * @param completedTaskCount the completed task count */
public void setCompletedTaskCount(long completedTaskCount) {
this.completedTaskCount = completedTaskCount;
}
/** * Gets active. * * @return the active */
public Integer getActive() {
return active;
}
/** * Sets active. * * @param active the active */
public void setActive(Integer active) {
this.active = active;
}
/** * Gets task. * * @return the task */
public long getTask() {
return task;
}
/** * Sets task. * * @param task the task */
public void setTask(long task) {
this.task = task;
}
/** * Gets keep alive time. * * @return the keep alive time */
public long getKeepAliveTime() {
return keepAliveTime;
}
/** * Sets keep alive time. * * @param keepAliveTime the keep alive time */
public void setKeepAliveTime(long keepAliveTime) {
this.keepAliveTime = keepAliveTime;
}
/** * Gets active percent. * * @return the active percent */
public String getActivePercent() {
return activePercent;
}
/** * Sets active percent. * * @param activePercent the active percent */
public void setActivePercent(String activePercent) {
this.activePercent = activePercent;
}
/** * Gets queue capacity. * * @return the queue capacity */
public Integer getQueueCapacity() {
return queueCapacity;
}
/** * Sets queue capacity. * * @param queueCapacity the queue capacity */
public void setQueueCapacity(Integer queueCapacity) {
this.queueCapacity = queueCapacity;
}
/** * Gets queue size. * * @return the queue size */
public Integer getQueueSize() {
return queueSize;
}
/** * Sets queue size. * * @param queueSize the queue size */
public void setQueueSize(Integer queueSize) {
this.queueSize = queueSize;
}
/** * Gets avg diff. * * @return the avg diff */
public long getAvgDiff() {
return avgDiff;
}
/** * Sets avg diff. * * @param avgDiff the avg diff */
public void setAvgDiff(long avgDiff) {
this.avgDiff = avgDiff;
}
}
複製代碼
ThreadPoolInfo.javaspring
/** * The type Thread pool info. */
public class ThreadPoolInfo {
private String threadPoolName;
private int corePoolSize;
private int maximumPoolSize;
private String queueType;
private int queueCapacity;
/** * Instantiates a new Thread pool info. * * @param threadPoolName the thread pool name * @param corePoolSize the core pool size * @param maximumPoolSize the maximum pool size * @param queueType the queue type * @param queueCapacity the queue capacity */
public ThreadPoolInfo(String threadPoolName, int corePoolSize, int maximumPoolSize, String queueType, int queueCapacity) {
this.threadPoolName = threadPoolName;
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.queueType = queueType;
this.queueCapacity = queueCapacity;
}
/** * Gets thread pool name. * * @return the thread pool name */
public String getThreadPoolName() {
return threadPoolName;
}
/** * Sets thread pool name. * * @param threadPoolName the thread pool name */
public void setThreadPoolName(String threadPoolName) {
this.threadPoolName = threadPoolName;
}
/** * Gets core pool size. * * @return the core pool size */
public int getCorePoolSize() {
return corePoolSize;
}
/** * Sets core pool size. * * @param corePoolSize the core pool size */
public void setCorePoolSize(int corePoolSize) {
this.corePoolSize = corePoolSize;
}
/** * Gets maximum pool size. * * @return the maximum pool size */
public int getMaximumPoolSize() {
return maximumPoolSize;
}
/** * Sets maximum pool size. * * @param maximumPoolSize the maximum pool size */
public void setMaximumPoolSize(int maximumPoolSize) {
this.maximumPoolSize = maximumPoolSize;
}
/** * Gets queue type. * * @return the queue type */
public String getQueueType() {
return queueType;
}
/** * Sets queue type. * * @param queueType the queue type */
public void setQueueType(String queueType) {
this.queueType = queueType;
}
/** * Gets capacity. * * @return the capacity */
public int getqueueCapacity() {
return queueCapacity;
}
/** * Sets capacity. * * @param queueCapacity the queue capacity */
public void setqueueCapacity(int queueCapacity) {
this.queueCapacity = queueCapacity;
}
}
複製代碼
經過actuator裏的@RestControllerEndpoint註解能夠添加Endpoints接口。本質上是和@Endpoint,@WebEndpoint做用是同樣的,都是爲服務增長actuator 接口,方便管理運行中的服務。可是有一個明顯的不一樣是,@RestControllerEndpoint只支持Http方式的訪問,不支持JMX的訪問。並且,端點的方法上面只支持@GetMapping,@PostMapping,@DeleteMapping,@RequestMapping等,而不支持@ReadOperation,@WriteOperation,@DeleteOperation。並且它返回的格式是:application/json。json
因爲我司的監控系統只支持json格式,實際上使用Metrics和Grafana去監控會更好。緩存
/** * The type Thread pool endpoint. * * @author newrank */
@RestControllerEndpoint(id = "threadpool")
@Component
public class ThreadPoolEndpoint {
@Autowired
private ThreadPoolUtil threadPoolUtil;
private static final ReentrantLock LOCK = new ReentrantLock();
private static final String RESIZEABLE_BLOCKING_QUEUE = "ResizeableBlockingQueue";
/** * getThreadPools * 獲取當前全部線程池的線程名稱 */
@GetMapping("getThreadPools")
private List<String> getThreadPools (){
List<String> threadPools = new ArrayList<>();
if (!threadPoolUtil.getThreadPoolExecutorHashMap().isEmpty()){
for (Map.Entry<String, ThreadPoolMonitor> entry : threadPoolUtil.getThreadPoolExecutorHashMap().entrySet()) {
threadPools.add(entry.getKey());
}
}
return threadPools;
}
/** * 獲取線程池可變參數信息 * @param threadPoolName * @return */
@GetMapping("getThreadPoolFixInfo")
private ThreadPoolInfo getThreadPoolInfo(@RequestParam String threadPoolName){
if (threadPoolUtil.getThreadPoolExecutorHashMap().containsKey(threadPoolName)){
ThreadPoolMonitor threadPoolExecutor = threadPoolUtil.getThreadPoolExecutorHashMap().get(threadPoolName);
int queueCapacity = 0;
if (RESIZEABLE_BLOCKING_QUEUE.equals(threadPoolExecutor.getQueue().getClass().getSimpleName())){
ResizeableBlockingQueue queue = (ResizeableBlockingQueue) threadPoolExecutor.getQueue();
queueCapacity = queue.getCapacity();
}
return new ThreadPoolInfo(threadPoolName,threadPoolExecutor.getCorePoolSize(),threadPoolExecutor.getMaximumPoolSize(),
threadPoolExecutor.getQueue().getClass().getSimpleName(),queueCapacity);
}
return null;
}
/** * 修改線程池配置 * @param threadPoolInfo * @return */
@PostMapping("setThreadPoolFixInfo")
private Boolean setThreadPoolInfo(@RequestBody ThreadPoolInfo threadPoolInfo){
if (threadPoolUtil.getThreadPoolExecutorHashMap().containsKey(threadPoolInfo.getThreadPoolName())){
LOCK.lock();
try {
ThreadPoolMonitor threadPoolExecutor = threadPoolUtil.getThreadPoolExecutorHashMap().get(threadPoolInfo.getThreadPoolName());
threadPoolExecutor.setMaximumPoolSize(threadPoolInfo.getMaximumPoolSize());
threadPoolExecutor.setCorePoolSize(threadPoolInfo.getCorePoolSize());
if (RESIZEABLE_BLOCKING_QUEUE.equals(threadPoolExecutor.getQueue().getClass().getSimpleName())){
ResizeableBlockingQueue queue = (ResizeableBlockingQueue) threadPoolExecutor.getQueue();
queue.setCapacity(threadPoolInfo.getqueueCapacity());
}
return true;
}catch (Exception e){
e.printStackTrace();
return false;
}
finally {
LOCK.unlock();
}
}
return false;
}
/** * 獲取線程池監控信息 * @return */
@GetMapping("getThreadPoolListInfo")
private List<ThreadPoolDetailInfo> getThreadPoolListInfo(){
List<ThreadPoolDetailInfo> detailInfoList = new ArrayList<>();
if (!threadPoolUtil.getThreadPoolExecutorHashMap().isEmpty()){
for (Map.Entry<String, ThreadPoolMonitor> entry : threadPoolUtil.getThreadPoolExecutorHashMap().entrySet()) {
ThreadPoolDetailInfo threadPoolDetailInfo = threadPoolInfo(entry.getValue(),entry.getKey());
detailInfoList.add(threadPoolDetailInfo);
}
}
return detailInfoList;
}
/** * 組裝線程池詳情 * @param threadPool * @param threadPoolName * @return */
private ThreadPoolDetailInfo threadPoolInfo(ThreadPoolMonitor threadPool,String threadPoolName) {
BigDecimal activeCount = new BigDecimal(threadPool.getActiveCount());
BigDecimal maximumPoolSize = new BigDecimal(threadPool.getMaximumPoolSize());
BigDecimal result =activeCount.divide(maximumPoolSize, 2, BigDecimal.ROUND_HALF_UP);
NumberFormat numberFormat = NumberFormat.getPercentInstance();
numberFormat.setMaximumFractionDigits(2);
int queueCapacity = 0;
if (RESIZEABLE_BLOCKING_QUEUE.equals(threadPool.getQueue().getClass().getSimpleName())){
ResizeableBlockingQueue queue = (ResizeableBlockingQueue) threadPool.getQueue();
queueCapacity = queue.getCapacity();
}
return new ThreadPoolDetailInfo(threadPoolName,threadPool.getPoolSize(), threadPool.getCorePoolSize(),
threadPool.getLargestPoolSize(), threadPool.getMaximumPoolSize(), threadPool.getCompletedTaskCount(),
threadPool.getActiveCount(),threadPool.getTaskCount(),threadPool.getKeepAliveTime(TimeUnit.MILLISECONDS),
numberFormat.format(result.doubleValue()),queueCapacity,threadPool.getQueue().size(),threadPool.getTotalDiff()/threadPool.getTaskCount());
}
}
複製代碼
@Async("asyncExecutor")
public void getTrendQuery(){
//do something
}
複製代碼
public void test() {
asyncExecutor.execute(()->{
//do something
}
);
複製代碼
http://localhost/actuator/threadpool/getThreadPoolListInfo //GET請求
複製代碼
返回:markdown
[
{
"active": 0, //正在進行的任務數
"activePercent": "0%",//線程池負載
"completedTaskCount": 17, //完成的任務數
"corePoolSize": 16, //核心線程數
"keepAliveTime": 60000,//線程存活時間
"largestPoolSize": 16,//到達的最大線程數
"maximumPoolSize": 32, //最大線程數
"poolSize": 16,//當前線程數
"queueCapacity": 500,//隊列長度 ps:若是不是ResizeableBlockingQueue 隊列則默認爲0
"task": 0, //任務總數
"queueSize":0,//隊列中緩存的任務數量
"threadPoolName": "asyncExecutor" //線程池名稱
}
]
複製代碼
http://localhost/actuator/threadpool/getThreadPoolFixInfo?threadPoolName=asyncExecutor //GET請求
複製代碼
參數:併發
名稱 | 類型 |
---|---|
threadPoolName | String |
返回:
{
"corePoolSize": 16, //核心線程數
"maximumPoolSize": 32, //最大線程數
"queueCapacity": 500, //隊列大小
"queueType": "ResizeableBlockingQueue", //隊列類型
"threadPoolName": "asyncExecutor" //線程池名稱
}
複製代碼
https://localhost/actuator/threadpool/setThreadPoolInfo //Post請求
複製代碼
參數:
名稱 | 類型 | 備註 |
---|---|---|
threadPoolName | String | |
corePoolSize | int | 可變 |
maximumPoolSize | int | 可變 |
queueCapacity | int | 可變 |
queueType | String | 不可變 |
請求類型:json
返回: Boolean
以上完整代碼在Github中
我的博客
做者水平有限,如有錯誤遺漏,請指出。
參考文章