全網最詳細的基於Ubuntu14.04/16.04 + Anaconda2 / Anaconda3 + Python2.7/3.4/3.5/3.6安裝Tensorflow詳細步驟(圖文)(博主推薦)

 

 

 

  很少說,直接上乾貨!html

 

 

 

前言html5

  建議參照最新的tensorflow安裝步驟(Linux,官方網站常常訪問不是很穩定,因此給了一個github的地址):          https://github.com/tensorflow/tensorflow/blob/master/tensorflow/docs_src/install/install_linux.mdnode

  最近,tensorflow網站上給出了新的使用Anaconda配置和安裝Tensorflow的步驟,通過測試,在國內能夠無障礙的訪問。Anaconda 是一個基於python的科學計算包集合,目前支持Python 2.7,3.4,3.5,3.6。python

 

  注意:在安裝過程當中若是出現很長的報錯,觀察錯誤信息的末尾,若是是網絡連接相關,就從新運行一遍語句便可(如出現進度條不動的狀況,也可從新運行語句),Anaconda自身約500M,tensorflow所需軟件包約幾十M。linux

  操做系統: Ubuntu 14.04   或  Ubuntu16.04git

 

 

 

  這是Github官網給出的安裝步驟github

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/docs_src/install/install_linux.mdweb

 

 

 

 

 

 

 

 

 

 

第一步、 安裝Anaconda

  從anaconda官網(https://www.continuum.io/downloads)上下載linux版本的安裝文件,運行完成安裝。redis

  我這裏是以Anaconda2-5.0.1-Linux-x86_64.sh爲例,Anaconda3同樣啦。這個很簡單。sql

 

deeplearning@deeplearningsinglenode:~/SoftWare$ pwd
/home/deeplearning/SoftWare
deeplearning@deeplearningsinglenode:~/SoftWare$ ll
total 519916
drwxrwxr-x  4 deeplearning deeplearning      4096 12月  4 09:42 ./
drwxr-xr-x 17 deeplearning deeplearning      4096 12月  3 20:46 ../
-rwxrw-r--  1 deeplearning deeplearning 532375438 12月  4 09:42 Anaconda2-5.0.1-Linux-x86_64.sh*
drwxr-xr-x  8 deeplearning deeplearning      4096  8月  5  2015 jdk1.8.0_60/
drwxrwxr-x 11 deeplearning deeplearning      4096 12月  3 20:07 pycharm-2017.3/
deeplearning@deeplearningsinglenode:~/SoftWare$ bash ./Anaconda2-5.0.1-Linux-x86_64.sh 

Welcome to Anaconda2 5.0.1

In order to continue the installation process, please review the license
agreement.
Please, press ENTER to continue
>>> 
===================================
Anaconda End User License Agreement
===================================

Copyright 2015, Anaconda, Inc.

All rights reserved under the 3-clause BSD License:

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditio
ns are met:

  * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
  * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer 
in the documentation and/or other materials provided with the distribution.
  * Neither the name of Continuum Analytics, Inc. (dba Anaconda, Inc.) ("Continuum") nor the names of its contributors may be used 
to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT N
OT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CON
TINUUM BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY TH
EORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


Notice of Third Party Software Licenses
=======================================

Anaconda contains open source software packages from third parties. These are available on an "as is" basis and subject to their in
dividual license agreements. These licenses are available in Anaconda or at https://docs.anaconda.com/anaconda/packages/pkg-docs . 
Any binary packages of these third party tools you obtain via Anaconda are subject to their individual licenses as well as the Anac
onda license. Continuum reserves the right to change which third party tools are provided in Anaconda.

In particular, Anaconda contains re-distributable, run-time, shared-library files from the Intel(TM) Math Kernel Library ("MKL bina
ries"). You are specifically authorized to use the MKL binaries with your installation of Anaconda. You are also authorized to redi
stribute the MKL binaries with Anaconda or in the conda package that contains them. Use and redistribution of the MKL binaries are 
subject to the licensing terms located at https://software.intel.com/en-us/license/intel-simplified-software-license. If needed, in
structions for removing the MKL binaries after installation of Anaconda are available at http://www.anaconda.com.

Anaconda also contains cuDNN software binaries from NVIDIA Corporation ("cuDNN binaries"). You are specifically authorized to use t
he cuDNN binaries with your installation of Anaconda. You are also authorized to redistribute the cuDNN binaries with an Anaconda p
ackage that contains them. If needed, instructions for removing the cuDNN binaries after installation of Anaconda are available at 
http://www.anaconda.com.


Cryptography Notice
===================

This distribution includes cryptographic software. The country in which you currently reside may have restrictions on the import, p
ossession, use, and/or re-export to another country, of encryption software. BEFORE using any encryption software, please check you
r country's laws, regulations and policies concerning the import, possession, or use, and re-export of encryption software, to see 
if this is permitted. See the Wassenaar Arrangement <http://www.wassenaar.org/> for more information.

Continuum has self-classified this software as Export Commodity Control Number (ECCN) 5D002.C.1, which includes information securit
y software using or performing cryptographic functions with asymmetric algorithms. The form and manner of this distribution makes i
t eligible for export under the License Exception ENC Technology Software Unrestricted (TSU) exception (see the BIS Export Administ
ration Regulations, Section 740.13) for both object code and source code. In addition, the Intel(TM) Math Kernel Library contained 
in Continuum's software is classified by Intel(TM) as ECCN 5D992b with no license required for export to non-embargoed countries.

The following packages are included in this distribution that relate to cryptography:

openssl
    The OpenSSL Project is a collaborative effort to develop a robust, commercial-grade, full-featured, and Open Source toolkit imp
lementing the Transport Layer Security (TLS) and Secure Sockets Layer (SSL) protocols as well as a full-strength general purpose cr
yptography library.

pycrypto
    A collection of both secure hash functions (such as SHA256 and RIPEMD160), and various encryption algorithms (AES, DES, RSA, El
Gamal, etc.).

pyopenssl
    A thin Python wrapper around (a subset of) the OpenSSL library.

kerberos (krb5, non-Windows platforms)
    A network authentication protocol designed to provide strong authentication for client/server applications by using secret-key 
cryptography.

cryptography
    A Python library which exposes cryptographic recipes and primitives.

 

 

 

 

 

 

 

Please answer 'yes' or 'no':'
>>> yes

Anaconda2 will now be installed into this location:
/home/deeplearning/anaconda2

  - Press ENTER to confirm the location
  - Press CTRL-C to abort the installation
  - Or specify a different location below

[/home/deeplearning/anaconda2] >>> 
PREFIX=/home/deeplearning/anaconda2

 

 

 

 

 

 

 

installing: python-2.7.14-hc2b0042_21 ...
Python 2.7.14 :: Anaconda, Inc.
installing: ca-certificates-2017.08.26-h1d4fec5_0 ...
installing: conda-env-2.6.0-h36134e3_1 ...
installing: intel-openmp-2018.0.0-h15fc484_7 ...
installing: libgcc-ng-7.2.0-h7cc24e2_2 ...
installing: libgfortran-ng-7.2.0-h9f7466a_2 ...
installing: libstdcxx-ng-7.2.0-h7a57d05_2 ...
installing: bzip2-1.0.6-h0376d23_1 ...
installing: expat-2.2.4-hc00ebd1_1 ...
installing: gmp-6.1.2-hb3b607b_0 ...
installing: graphite2-1.3.10-hc526e54_0 ...
installing: icu-58.2-h211956c_0 ...
installing: jbig-2.1-hdba287a_0 ...
installing: jpeg-9b-habf39ab_1 ...
installing: libffi-3.2.1-h4deb6c0_3 ...
installing: libsodium-1.0.13-h31c71d8_2 ...
installing: libssh2-1.8.0-h8c220ad_2 ...
installing: libtool-2.4.6-hd50d1a6_0 ...
installing: libxcb-1.12-h84ff03f_3 ...
installing: lzo-2.10-h1bfc0ba_1 ...
installing: mkl-2018.0.0-hb491cac_4 ...
installing: ncurses-6.0-h06874d7_1 ...
installing: openssl-1.0.2l-h077ae2c_5 ...
installing: patchelf-0.9-hf79760b_2 ...
installing: pcre-8.41-hc71a17e_0 ...
installing: pixman-0.34.0-h83dc358_2 ...
installing: tk-8.6.7-h5979e9b_1 ...
installing: unixodbc-2.3.4-hc36303a_1 ...
installing: xz-5.2.3-h2bcbf08_1 ...
installing: yaml-0.1.7-h96e3832_1 ...
installing: zlib-1.2.11-hfbfcf68_1 ...
installing: curl-7.55.1-hcb0b314_2 ...
installing: glib-2.53.6-hc861d11_1 ...
installing: hdf5-1.10.1-hb0523eb_0 ...
installing: libedit-3.1-heed3624_0 ...
installing: libpng-1.6.32-hda9c8bc_2 ...
installing: libtiff-4.0.8-h90200ff_9 ...
installing: libxml2-2.9.4-h6b072ca_5 ...
installing: mpfr-3.1.5-h12ff648_1 ...
installing: pandoc-1.19.2.1-hea2e7c5_1 ...
installing: readline-7.0-hac23ff0_3 ...
installing: zeromq-4.2.2-hb0b69da_1 ...
installing: dbus-1.10.22-h3b5a359_0 ...
installing: freetype-2.8-h52ed37b_0 ...
installing: gstreamer-1.12.2-h4f93127_0 ...
installing: libxslt-1.1.29-hcf9102b_5 ...
installing: mpc-1.0.3-hf803216_4 ...
installing: sqlite-3.20.1-h6d8b0f3_1 ...
installing: fontconfig-2.12.4-h88586e7_1 ...
installing: gst-plugins-base-1.12.2-he3457e5_0 ...
installing: alabaster-0.7.10-py27he5a193a_0 ...
installing: asn1crypto-0.22.0-py27h94ebe91_1 ...
installing: backports-1.0-py27h63c9359_1 ...
installing: backports_abc-0.5-py27h7b3c97b_0 ...
installing: beautifulsoup4-4.6.0-py27h3f86ba9_1 ...
installing: bitarray-0.8.1-py27h304d4c6_0 ...
installing: boto-2.48.0-py27h9556ac2_1 ...
installing: cairo-1.14.10-haa5651f_5 ...
installing: cdecimal-2.3-py27h4e63abe_1 ...
installing: certifi-2017.7.27.1-py27h9ceb091_0 ...
installing: chardet-3.0.4-py27hfa10054_1 ...
installing: click-6.7-py27h4225b90_0 ...
installing: cloudpickle-0.4.0-py27ha64365b_0 ...
installing: colorama-0.3.9-py27h5cde069_0 ...
installing: configparser-3.5.0-py27h5117587_0 ...
installing: contextlib2-0.5.5-py27hbf4c468_0 ...
installing: dask-core-0.15.3-py27h53a7ee6_0 ...
installing: decorator-4.1.2-py27h1544723_0 ...
installing: docutils-0.14-py27hae222c1_0 ...
installing: enum34-1.1.6-py27h99a27e9_1 ...
installing: et_xmlfile-1.0.1-py27h75840f5_0 ...
installing: fastcache-1.0.2-py27h4cb8e01_0 ...
installing: filelock-2.0.12-py27h38fa839_0 ...
installing: funcsigs-1.0.2-py27h83f16ab_0 ...
installing: functools32-3.2.3.2-py27h4ead58f_1 ...
installing: futures-3.1.1-py27hdbc8cbb_0 ...
installing: glob2-0.5-py27hd3b7d1f_1 ...
installing: gmpy2-2.0.8-py27hc856308_1 ...
installing: greenlet-0.4.12-py27hac09c53_0 ...
installing: grin-1.2.1-py27h54abee7_1 ...
installing: heapdict-1.0.0-py27h33770af_0 ...
installing: idna-2.6-py27h5722d68_1 ...
installing: imagesize-0.7.1-py27hd17bf80_0 ...
installing: ipaddress-1.0.18-py27h337fd85_0 ...
installing: ipython_genutils-0.2.0-py27h89fb69b_0 ...
installing: itsdangerous-0.24-py27hb8295c1_1 ...
installing: jdcal-1.3-py27h2cc5433_0 ...
installing: jedi-0.10.2-py27h8af4e35_0 ...
installing: lazy-object-proxy-1.3.1-py27h682c727_0 ...
installing: locket-0.2.0-py27h73929a2_1 ...
installing: lxml-4.1.0-py27hb025457_0 ...
installing: markupsafe-1.0-py27h97b2822_1 ...
installing: mccabe-0.6.1-py27h0e7c7be_1 ...
installing: mistune-0.7.4-py27h6da7e90_0 ...
installing: mkl-service-1.1.2-py27hb2d42c5_4 ...
installing: mpmath-0.19-py27h4bb41bd_2 ...
installing: msgpack-python-0.4.8-py27hc2fa789_0 ...
installing: multipledispatch-0.4.9-py27h9b5f95a_0 ...
installing: numpy-1.13.3-py27hbcc08e0_0 ...
installing: olefile-0.44-py27h4bd3e3c_0 ...
installing: pandocfilters-1.4.2-py27h428e1e5_1 ...
installing: path.py-10.3.1-py27hc258cac_0 ...
installing: pep8-1.7.0-py27h444351c_0 ...
installing: pkginfo-1.4.1-py27hee1a9ad_1 ...
installing: ply-3.10-py27hd6d9ae5_0 ...
installing: psutil-5.4.0-py27h7da3062_0 ...
installing: ptyprocess-0.5.2-py27h4ccb14c_0 ...
installing: py-1.4.34-py27he5894e4_1 ...
installing: pycodestyle-2.3.1-py27h904819d_0 ...
installing: pycosat-0.6.2-py27h1cf261c_1 ...
installing: pycparser-2.18-py27hefa08c5_1 ...
installing: pycrypto-2.6.1-py27h9abbf5c_1 ...
installing: pycurl-7.43.0-py27hcf8ebea_3 ...
installing: pyodbc-4.0.17-py27h7f7627d_0 ...
installing: pyparsing-2.2.0-py27hf1513f8_1 ...
installing: pysocks-1.6.7-py27he2db6d2_1 ...
installing: pytz-2017.2-py27hcac29fa_1 ...
installing: pyyaml-3.12-py27h2d70dd7_1 ...
installing: pyzmq-16.0.2-py27h297844f_2 ...
installing: qt-5.6.2-h974d657_12 ...
installing: qtpy-1.3.1-py27h63d3751_0 ...
installing: rope-0.10.5-py27hcb0a616_0 ...
installing: ruamel_yaml-0.11.14-py27h672d447_2 ...
installing: scandir-1.6-py27hf7388dc_0 ...
installing: simplegeneric-0.8.1-py27h19e43cd_0 ...
installing: sip-4.18.1-py27he9ba0ab_2 ...
installing: six-1.11.0-py27h5f960f1_1 ...
installing: snowballstemmer-1.2.1-py27h44e2768_0 ...
installing: sortedcontainers-1.5.7-py27he59936f_0 ...
installing: sphinxcontrib-1.0-py27h1512b58_1 ...
installing: sqlalchemy-1.1.13-py27hb0a01da_0 ...
installing: subprocess32-3.2.7-py27h373dbce_0 ...
installing: tblib-1.3.2-py27h51fe5ba_0 ...
installing: toolz-0.8.2-py27hd3b1e7e_0 ...
installing: typing-3.6.2-py27h66f49e2_0 ...
installing: unicodecsv-0.14.1-py27h5062da9_0 ...
installing: wcwidth-0.1.7-py27h9e3e1ab_0 ...
installing: webencodings-0.5.1-py27hff10b21_1 ...
installing: werkzeug-0.12.2-py27hbf75dff_0 ...
installing: wrapt-1.10.11-py27h04f6869_0 ...
installing: xlrd-1.1.0-py27ha77178f_1 ...
installing: xlsxwriter-1.0.2-py27h12cbc6b_0 ...
installing: xlwt-1.3.0-py27h3d85d97_0 ...
installing: babel-2.5.0-py27h20693cd_0 ...
installing: backports.shutil_get_terminal_size-1.0.0-py27h5bc021e_2 ...
installing: bottleneck-1.2.1-py27h21b16a3_0 ...
installing: cffi-1.10.0-py27hf1aaaf4_1 ...
installing: conda-verify-2.0.0-py27hf052a9d_0 ...
installing: cycler-0.10.0-py27hc7354d3_0 ...
installing: cytoolz-0.8.2-py27hf14aec9_0 ...
installing: entrypoints-0.2.3-py27h502b47d_2 ...
installing: h5py-2.7.0-py27h71d1790_1 ...
installing: harfbuzz-1.5.0-h2545bd6_0 ...
installing: html5lib-0.999999999-py27hdf15f34_0 ...
installing: llvmlite-0.20.0-py27_0 ...
installing: networkx-2.0-py27hfc23926_0 ...
installing: nltk-3.2.4-py27h41293c3_0 ...
installing: numexpr-2.6.2-py27he5efce1_1 ...
installing: openpyxl-2.4.8-py27h9f0c937_1 ...
installing: packaging-16.8-py27h5e07c7c_1 ...
installing: partd-0.3.8-py27h4e55004_0 ...
installing: pathlib2-2.3.0-py27h6e9d198_0 ...
installing: pexpect-4.2.1-py27hcf82287_0 ...
installing: pillow-4.2.1-py27h7cd2321_0 ...
installing: pycairo-1.13.3-py27hea6d626_0 ...
installing: pyqt-5.6.0-py27h4b1e83c_5 ...
installing: python-dateutil-2.6.1-py27h4ca5741_1 ...
installing: pywavelets-0.5.2-py27hecda097_0 ...
installing: qtawesome-0.4.4-py27hd7914c3_0 ...
installing: scipy-0.19.1-py27h1edc525_3 ...
installing: setuptools-36.5.0-py27h68b189e_0 ...
installing: singledispatch-3.4.0.3-py27h9bcb476_0 ...
installing: sortedcollections-0.5.3-py27h135218e_0 ...
installing: sphinxcontrib-websupport-1.0.1-py27hf906f22_1 ...
installing: ssl_match_hostname-3.5.0.1-py27h4ec10b9_2 ...
installing: sympy-1.1.1-py27hc28188a_0 ...
installing: traitlets-4.3.2-py27hd6ce930_0 ...
installing: zict-0.1.3-py27h12c336c_0 ...
installing: backports.functools_lru_cache-1.4-py27he8db605_1 ...
installing: bleach-2.0.0-py27h3a0dcc8_0 ...
installing: clyent-1.2.2-py27h7276e6c_1 ...
installing: cryptography-2.0.3-py27hea39389_1 ...
installing: cython-0.26.1-py27hdbcff32_0 ...
installing: datashape-0.5.4-py27hf507385_0 ...
installing: get_terminal_size-1.0.0-haa9412d_0 ...
installing: gevent-1.2.2-py27h475ea6a_0 ...
installing: imageio-2.2.0-py27hf108a7f_0 ...
installing: isort-4.2.15-py27hcfa4749_0 ...
installing: jinja2-2.9.6-py27h82327ae_1 ...
installing: jsonschema-2.6.0-py27h7ed5aa4_0 ...
installing: jupyter_core-4.3.0-py27hcd9ae3a_0 ...
installing: navigator-updater-0.1.0-py27h0f9cd39_0 ...
installing: nose-1.3.7-py27heec2199_2 ...
installing: numba-0.35.0-np113py27_10 ...
installing: pandas-0.20.3-py27h820b67f_2 ...
installing: pango-1.40.11-h8191d47_0 ...
installing: patsy-0.4.1-py27hd1cf8c0_0 ...
installing: pickleshare-0.7.4-py27h09770e1_0 ...
installing: pyflakes-1.6.0-py27h904a57d_0 ...
installing: pygments-2.2.0-py27h4a8b6f5_0 ...
installing: pytables-3.4.2-py27h1f7bffc_2 ...
installing: pytest-3.2.1-py27h98000ae_1 ...
installing: scikit-learn-0.19.1-py27h445a80a_0 ...
installing: testpath-0.3.1-py27hc38d2c4_0 ...
installing: tornado-4.5.2-py27h97b179f_0 ...
installing: wheel-0.29.0-py27h411dd7b_1 ...
installing: astroid-1.5.3-py27h8f8f47c_0 ...
installing: astropy-2.0.2-py27h57072c0_4 ...
installing: bkcharts-0.2-py27h241ae91_0 ...
installing: bokeh-0.12.10-py27he46cc6b_0 ...
installing: distributed-1.19.1-py27h38c4a05_0 ...
installing: flask-0.12.2-py27h6d5c1cd_0 ...
installing: jupyter_client-5.1.0-py27hbee1118_0 ...
installing: matplotlib-2.1.0-py27h09aba24_0 ...
installing: nbformat-4.4.0-py27hed7f2b2_0 ...
installing: pip-9.0.1-py27hbf658b2_3 ...
installing: prompt_toolkit-1.0.15-py27h1b593e1_0 ...
installing: pyopenssl-17.2.0-py27h189ff3b_0 ...
installing: statsmodels-0.8.0-py27hc87d62d_0 ...
installing: terminado-0.6-py27h4be8df9_0 ...
installing: dask-0.15.3-py27hb94b45f_0 ...
installing: flask-cors-3.0.3-py27h1a8a27f_0 ...
installing: ipython-5.4.1-py27h36c99b6_1 ...
installing: nbconvert-5.3.1-py27he041f76_0 ...
installing: pylint-1.7.4-py27h6bc7935_0 ...
installing: seaborn-0.8.0-py27h9d2aaa1_0 ...
installing: urllib3-1.22-py27ha55213b_0 ...
installing: ipykernel-4.6.1-py27hc93e584_0 ...
installing: odo-0.5.1-py27h9170de3_0 ...
installing: requests-2.18.4-py27hc5b0589_1 ...
installing: scikit-image-0.13.0-py27h06cb35d_1 ...
installing: anaconda-client-1.6.5-py27hc8169bf_0 ...
installing: blaze-0.11.3-py27h5f341da_0 ...
installing: conda-4.3.30-py27h6ae6dc7_0 ...
installing: jupyter_console-5.2.0-py27hc6bee7e_1 ...
installing: notebook-5.0.0-py27h3661c2b_2 ...
installing: qtconsole-4.3.1-py27hc444b0d_0 ...
installing: sphinx-1.6.3-py27hf9b1778_0 ...
installing: anaconda-project-0.8.0-py27hd7a9a97_0 ...
installing: conda-build-3.0.27-py27hff9f855_0 ...
installing: jupyterlab_launcher-0.4.0-py27h0e16d15_0 ...
installing: numpydoc-0.7.0-py27h9647a75_0 ...
installing: widgetsnbextension-3.0.2-py27hcb77dec_1 ...
installing: anaconda-navigator-1.6.9-py27hfbc306d_0 ...
installing: ipywidgets-7.0.0-py27h4fda95d_0 ...
installing: jupyterlab-0.27.0-py27h42ebfef_2 ...
installing: spyder-3.2.4-py27h04a3490_0 ...
installing: _ipyw_jlab_nb_ext_conf-0.1.0-py27h08a7f0c_0 ...
installing: jupyter-1.0.0-py27h505fd4b_0 ...
installing: anaconda-5.0.1-py27hd9359a7_1 ...
installation finished.
Do you wish the installer to prepend the Anaconda2 install location
to PATH in your /home/deeplearning/.bashrc ? [yes|no]
[no] >>> You may wish to edit your .bashrc to prepend the Anaconda2 install location to PATH: export PATH=/home/deeplearning/anaconda2/bin:$PATH

Thank you for installing Anaconda2!

 

   由於這是一個坑,是安裝時最後一步添加環境變量的時候沒有選擇yes致使運行 conda info 時出錯,很好解決,根據錯誤提示:

  而後,緊接着去配置Anaconda2的環境變量。怎麼作呢?很簡單。

 

 

  在命令行輸入就能夠了。

$ export PATH=/home/deeplearning/anaconda2/bin:$PATH

 

 

 

 

 

 

 

 

 

 

第二步、創建一個tensorflow的運行環境

# Python 2.7 (選好本身的) 
$ conda create -n tensorflow python=2.7  
  
# Python 3.4 (選好本身的)
$ conda create -n tensorflow python=3.4  
  
# Python 3.5  (選好本身的)
$ conda create -n tensorflow python=3.5  

 

 

   注意:在這一步,你也許會遇到conda: command not found

 

  遇到這個問題的時候, 


  解決方法是:

export PATH="/home/[your_name]/anaconda/bin:$PATH"

  好比我這裏是

export PATH=/home/deeplearning/anaconda2/bin:$PATH

 

  可是下一次重啓以後,仍是會出現這個問題,因此咱們要激活下 ~/.bash_profile

. ~/.bash_profile
#或者
source ~/.bash_profile

 

 

或者source /etc/profile

 那是由於個人環境變量是以下:

 

#Anaconda2
ANACONDA2_HOME=/home/deeplearning/anaconda2
ANACONDA2_BIN=/home/deeplearning/anaconda2/bin
PATH=$PATH:$ANACONDA2_BIN
export ANACONDA2_HOME ANACONDA2_BIN PATH

 

 

   因此,

deeplearning@deeplearningsinglenode:~$ conda create -n tensorflow python=2.7  
Fetching package metadata ...........
Solving package specifications: .

Package plan for installation in environment /home/deeplearning/anaconda2/envs/tensorflow:

The following NEW packages will be INSTALLED:

    ca-certificates: 2017.08.26-h1d4fec5_0   
    certifi:         2017.11.5-py27h71e7faf_0
    libedit:         3.1-heed3624_0          
    libffi:          3.2.1-hd88cf55_4        
    libgcc-ng:       7.2.0-h7cc24e2_2        
    libstdcxx-ng:    7.2.0-h7a57d05_2        
    ncurses:         6.0-h9df7e31_2          
    openssl:         1.0.2m-h26d622b_1       
    pip:             9.0.1-py27ha730c48_4    
    python:          2.7.14-hdd48546_24      
    readline:        7.0-ha6073c6_4          
    setuptools:      36.5.0-py27h68b189e_0   
    sqlite:          3.20.1-hb898158_2       
    tk:              8.6.7-hc745277_3        
    wheel:           0.30.0-py27h2bc6bb2_1   
    zlib:            1.2.11-ha838bed_2       

Proceed ([y]/n)? y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

第三步、在conda環境中安裝tensorflow

  在conda環境中安裝tensorflow的好處是能夠便捷的管理tensorflow的依賴包。

  分爲兩個步驟:激活上一步創建的名爲tensorflow的conda環境;用conda或者pip工具安裝Tensorflow,我選擇的是pip方式。

 

3.1 pip方式(能夠這種方式來安裝)

  pip方式須要首先激活conda環境

deeplearning@deeplearningsinglenode:~$ source activate tensorflow
(tensorflow) deeplearning@deeplearningsinglenode:~$ 

 

 

   而後根據要安裝的不一樣tensorflow版本選擇對應的一條環境變量設置export語句(操做系統,Python版本,CPU版本仍是CPU+GPU版本)

# Ubuntu/Linux 64-bit, CPU only, Python 2.7  
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.10.0-cp27-none-linux_x86_64.whl 
  
# Ubuntu/Linux 64-bit, GPU enabled, Python 2.7  
# Requires CUDA toolkit 7.5 and CuDNN v5. For other versions, see "Install from sources" below.  
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.10.0-cp27-none-linux_x86_64.whl 
  
# Mac OS X, CPU only, Python 2.7:  
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-0.10.0-py2-none-any.whl 
  
# Mac OS X, GPU enabled, Python 2.7:  
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/gpu/tensorflow-0.10.0-py2-none-any.whl 
  
# Ubuntu/Linux 64-bit, CPU only, Python 3.4  
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.10.0-cp34-cp34m-linux_x86_64.whl  
  
# Ubuntu/Linux 64-bit, GPU enabled, Python 3.4  
# Requires CUDA toolkit 7.5 and CuDNN v5. For other versions, see "Install from sources" below.  
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.10.0-cp34-cp34m-linux_x86_64.whl  
  
# Ubuntu/Linux 64-bit, CPU only, Python 3.5  
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.10.0-cp35-cp35m-linux_x86_64.whl 
  
# Ubuntu/Linux 64-bit, GPU enabled, Python 3.5  
# Requires CUDA toolkit 7.5 and CuDNN v5. For other versions, see "Install from sources" below.  
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.10.0-cp35-cp35m-linux_x86_64.whl  
  
# Mac OS X, CPU only, Python 3.4 or 3.5:  
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-0.10.0-py3-none-any.whl  
  
# Mac OS X, GPU enabled, Python 3.4 or 3.5:  
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/gpu/tensorflow-0.10.0-py3-none-any.whl 

 

 

 

 

 

 

 

  最後根據是python 2仍是3版本選擇一句進行安裝。

# Python 2  
(tensorflow)$ pip install --ignore-installed --upgrade $TF_BINARY_URL  
  
# Python 3  
(tensorflow)$ pip3 install --ignore-installed --upgrade $TF_BINARY_URL 

 

 

 

 
(tensorflow) deeplearning@deeplearningsinglenode:~$ pip install --ignore-installed --upgrade $TF_BINARY_URL
Collecting tensorflow==0.10.0 from https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.10.0-cp27-none-linux_x86_64.whl
  Downloading https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.10.0-cp27-none-linux_x86_64.whl (36.6MB)
    12% |████                            | 4.5MB 14.0MB/s eta 0:00:03^[^A^[^AException:
Traceback (most recent call last):
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/basecommand.py", line 215, in main
    status = self.run(options, args)
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/commands/install.py", line 335, in run
    wb.build(autobuilding=True)
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/wheel.py", line 749, in build
    self.requirement_set.prepare_files(self.finder)
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/req/req_set.py", line 380, in prepare_files
    ignore_dependencies=self.ignore_dependencies))
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/req/req_set.py", line 620, in _prepare_file
    session=self.session, hashes=hashes)
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/download.py", line 821, in unpack_url
    hashes=hashes
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/download.py", line 659, in unpack_http_url
    hashes)
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/download.py", line 882, in _download_http_url
    _download_url(resp, link, content_file, hashes)
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/download.py", line 605, in _download_url
    consume(downloaded_chunks)
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/utils/__init__.py", line 852, in consume
    deque(iterator, maxlen=0)
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/download.py", line 571, in written_chunks
    for chunk in chunks:
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/utils/ui.py", line 139, in iter
    for x in it:
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/download.py", line 560, in resp_read
    decode_content=False):
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/_vendor/requests/packages/urllib3/response.py", line 357, in stream
    data = self.read(amt=amt, decode_content=decode_content)
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/_vendor/requests/packages/urllib3/response.py", line 324, in read
    flush_decoder = True
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/contextlib.py", line 35, in __exit__
    self.gen.throw(type, value, traceback)
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/_vendor/requests/packages/urllib3/response.py", line 246, in _error_catcher
    raise ReadTimeoutError(self._pool, None, 'Read timed out.')
ReadTimeoutError: HTTPSConnectionPool(host='storage.googleapis.com', port=443): Read timed out.
(tensorflow) deeplearning@deeplearningsinglenode:~$ 

  

  注意:這是在安裝tensorflow的時候建立tensorflow環境失敗,這是個坑,由於有些版本地址失效了。

                  換其餘版本試試。好比以下我如今是2017年12月份,採用conda方式安裝tensorflow,版本已是1.4.0-py27_0

 

 

 

 
 
 
 
 
 
 
 
 

3.2 conda方式(或者也能夠這種方式來安裝)

  conda上面目前有人已經作好了tensorflow的pkg,可是版本不必定最新,且只有CPU版本,不支持GPU。

  步驟也是首先激活conda環境,而後調用conda install 語句安裝.

$ source activate tensorflow  
(tensorflow)$  # Your prompt should change  
  
# Linux/Mac OS X, Python 2.7/3.4/3.5, CPU only:  
(tensorflow)$ conda install -c conda-forge tensorflow  

 

 

 

(tensorflow) deeplearning@deeplearningsinglenode:~$ conda install -c conda-forge tensorflow  
Fetching package metadata .............
Solving package specifications: .

Package plan for installation in environment /home/deeplearning/anaconda2/envs/tensorflow:

The following NEW packages will be INSTALLED:

    bleach:       1.5.0-py27_0          conda-forge
    enum34:       1.1.6-py27_1          conda-forge
    funcsigs:     1.0.2-py_2            conda-forge
    futures:      3.2.0-py27_0          conda-forge
    html5lib:     0.9999999-py27_0      conda-forge
    intel-openmp: 2018.0.0-hc7b2577_8              
    markdown:     2.6.9-py27_0          conda-forge
    mkl:          2018.0.1-h19d6760_4              
    mock:         2.0.0-py27_0          conda-forge
    numpy:        1.13.3-py27hbcc08e0_0            
    pbr:          3.1.1-py27_0          conda-forge
    protobuf:     3.5.0-py27_0          conda-forge
    six:          1.11.0-py27_1         conda-forge
    tensorboard:  0.4.0rc3-py27_0       conda-forge
    tensorflow:   1.4.0-py27_0          conda-forge
    webencodings: 0.5-py27_0            conda-forge
    werkzeug:     0.12.2-py_1           conda-forge

Proceed ([y]/n)? y

intel-openmp-2 100% |#################################| Time: 0:00:01 478.61 kB/s
mkl-2018.0.1-h 100% |#################################| Time: 0:01:08   2.84 MB/s
enum34-1.1.6-p 100% |#################################| Time: 0:00:01  32.00 kB/s
funcsigs-1.0.2 100% |#################################| Time: 0:00:00  38.56 kB/s
futures-3.2.0- 100% |#################################| Time: 0:00:00  74.10 kB/s
markdown-2.6.9 100% |#################################| Time: 0:00:01  73.17 kB/s
six-1.11.0-py2 100% |#################################| Time: 0:00:00  62.19 kB/s
webencodings-0 100% |#################################| Time: 0:00:00  25.65 kB/s
werkzeug-0.12. 100% |#################################| Time: 0:00:14  17.24 kB/s
html5lib-0.999 100% |#################################| Time: 0:00:04  39.10 kB/s
bleach-1.5.0-p 100% |#################################| Time: 0:00:00  66.33 kB/s
protobuf-3.5.0 100% |#################################| Time: 0:00:47 128.41 kB/s
tensorboard-0. 100% |#################################| Time: 0:00:22  77.40 kB/s
pbr-3.1.1-py27 100% |#################################| Time: 0:00:02  41.01 kB/s
mock-2.0.0-py2 100% |#################################| Time: 0:00:03  30.23 kB/s
tensorflow-1.4 100% |#################################| Time: 0:03:53 153.09 kB/s
(tensorflow) deeplearning@deeplearningsinglenode:~$ 
(tensorflow) deeplearning@deeplearningsinglenode:~$ 

 

 

 

 

  上面的步驟完成後,從conda環境中退出:

(tensorflow)$ source deactivate  

 

 

 
 
 
 
 

 

第四步、測試安裝是否成功

   首先激活 tensorflow 環境,而後進入 python,最後導入 tensorflow 庫。若是導入成功則代表安裝成功。

(tensorflow) deeplearning@deeplearningsinglenode:~$ source deactivate  
deeplearning@deeplearningsinglenode:~$ 
deeplearning@deeplearningsinglenode:~$ 
deeplearning@deeplearningsinglenode:~$ source activate tensorflow  
(tensorflow) deeplearning@deeplearningsinglenode:~$ 
(tensorflow) deeplearning@deeplearningsinglenode:~$ python
Python 2.7.14 |Anaconda, Inc.| (default, Nov 20 2017, 18:04:19) 
[GCC 7.2.0] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> hello = tf.constant('Hi,TensorFlow!')
>>> sess = tf.Session()
2017-12-04 19:18:08.790862: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA
>>> print sess.run(hello)
Hi,TensorFlow!
>>> 

 

 

 

 

 

 

 

 

 

 

 

第五步、須要使用 TensorFlow 的時候必須從新激活

  當使用完畢後,關閉 tensorflow 環境。

Use exit() or Ctrl-D (i.e. EOF) to exit
>>> exit()
(tensorflow) deeplearning@deeplearningsinglenode:~$ 
(tensorflow) deeplearning@deeplearningsinglenode:~$ 
(tensorflow) deeplearning@deeplearningsinglenode:~$ 
(tensorflow) deeplearning@deeplearningsinglenode:~$ source deactivate
deeplearning@deeplearningsinglenode:~$ 

  而後你的終端提示符就會變會原的樣子。

 

 

  當你須要再次使用的時候就必須再次激活 tensorflow 環境。

source activate tensorflow

  ..........

  ......

  關閉 tensorflow 環境,並從新激活

 

 

 

 

 

第五步、 Finally

  至此,你已經擁有了一個能夠玩耍機器學習的 tensorflow 環境,好好玩耍吧:)

  你能夠參照官方文檔快速的運行一個手寫數字識別的示例。友情提示:僅 CPU 版本你須要有足夠的耐心。。。。。。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

歡迎你們,加入個人微信公衆號:大數據躺過的坑        人工智能躺過的坑
 
 
 

同時,你們能夠關注個人我的博客

   http://www.cnblogs.com/zlslch/   和     http://www.cnblogs.com/lchzls/      http://www.cnblogs.com/sunnyDream/   

   詳情請見:http://www.cnblogs.com/zlslch/p/7473861.html

 

  人生苦短,我願分享。本公衆號將秉持活到老學到老學習無休止的交流分享開源精神,匯聚於互聯網和我的學習工做的精華乾貨知識,一切來於互聯網,反饋回互聯網。
  目前研究領域:大數據、機器學習、深度學習、人工智能、數據挖掘、數據分析。 語言涉及:Java、Scala、Python、Shell、Linux等 。同時還涉及日常所使用的手機、電腦和互聯網上的使用技巧、問題和實用軟件。 只要你一直關注和呆在羣裏,天天必須有收穫

 

      對應本平臺的討論和答疑QQ羣:大數據和人工智能躺過的坑(總羣)(161156071) 

 

 

 

 

 

 

 

 

 

 

 

 

相關文章
相關標籤/搜索