1、準備物理集羣。
一、物理集羣搭建方式。
採用搭建3臺虛擬機的方式來部署3個節點的物理集羣。
二、虛擬機準備。
準備一個已近建好的虛擬機進行克隆。(建議爲沒進行過任何操做的)
在要選擇克隆的虛擬機上右擊鼠標,管理,克隆。
在彈出對話框中進行如下操做。
(1)、下一步。
(2)、選擇虛擬機中的當前狀態,下一步。![]()
(3)、選擇建立完整克隆,下一步。
(4)、輸入虛擬機名稱,下一步。
(5)、克隆完成。
(6)、按照上述步驟再建立一個虛擬機名稱爲slave02的。
三、虛擬機網絡配置。
因爲slave01和slave02虛擬機是克隆的,因此要修改這2臺虛擬機的網卡信息。
slave01修改以下:
(1)、輸入命令:vi /etc/udev/rules.d/70-persistent-net.rules![]()
(2)、輸入命令:vi /etc/sysconfig/network-scripts/ifcfg-eth0![]()
(3)、修改主機名,輸入命令:vi /etc/sysconfig/network![]()
(4)重啓系統,命令:reboot
slave02修改同slave01的,注意:IPADDR不同,主機名不同!!!
最後重啓全部節點網卡(service network restart),使之生效,保證每臺虛擬機能實現和外網連同!!!
還需禁用SELINUX:vi /etc/selinux/config
> 2、集羣規劃。
一、主機規劃:
master00/192.168.169.159:
Namenode,Datanode,ResourceManager,Journalnode,Zookeeper
slave01/192.168.169.160:
Namenode,Datanode,ResourceManager,Journalnode,Zookeeper
slave02/192.168.169.161:
Datanode,Journalnode,Zookeeper
二、軟件規劃:
JDK1.8
CentOS6.5
Zookeeper3.4.6
Hadoop2.7.3
三、用戶規劃:
每一個節點的hadoop用戶組和用戶須要本身建立:
master00爲hadoop:hadoop
slave01爲hadoop:hadoop
slave02爲hadoop:hadoop
四、目錄規劃:
軟件存放目錄:/home/hadoop/app/
數據日誌目錄:/home/hadoop/data/
> 3、安裝前準備。
一、同步當前系統時間和日期與NTP 一致:
(1)、在線安裝ntp:yum install ntp
(2)、執行同步日期時間:ntpdate pool.ntp.org
(3)、查看當前系統時間:date
注意:以上命令須要在每個節點執行!!!
二、hosts文件檢查:
全部節點都需配置如下信息:vi /etc/hosts![]()
三、禁用防火牆:chkconfig iptables off(此爲永久關閉,執行後需重啓)
檢查:service iptables status
四、配置SSH免密碼通訊
(1)、配置SSH:如下爲master00爲例配置(slave01和slave02也要執行如下操做)
(2)、將全部節點中的id_rsa.pub複製到master00中的authorized_keys文件中
(3)、將master00中的authorized_keys文件發到全部節點上面。
slave01:![]()
slave02:
經過SSH互相訪問,若能經過無密碼訪問,即SSH配置成功!!!
五、腳本的使用:方便Hadoop分佈式集羣搭建
(1)、在master00節點上建立/home/hadoop/tools目錄
(2)、將腳本上傳到此目錄下(能夠用Xftp工具上傳)java
deploy.conf腳本:http://www.javashuo.com/article/p-wwvechbx-ca.html
deploy.sh腳本:http://www.javashuo.com/article/p-vzqisgbh-cp.html
runRemoteCmd.sh腳本:http://www.javashuo.com/article/p-nejqwyoa-bn.html
(3)、爲腳本添加權限
[hadoop@master00 tools]$ chmod u+x deploy.sh
[hadoop@master00 tools]$ chmod u+x runRemoteCmd.sh
(4)、配置PATH![]()
(5)、在master00節點上,經過腳本,一鍵建立全部節點的軟件安裝目錄
runRemoteCmd.sh "mkdir /home/hadoop/app" all![]()
注意:若是主機名和個人不同,須要修改deploy.conf配置文件
六、hadoop相關軟件安裝
(1)、JDK安裝,上傳JDK到app目錄下,進行解壓
(2),修改文件名稱爲jdk![]()
(3)、添加JDK環境變量:vi /etc/profile
使配置文件生效:source /etc/profile
(4)、查看JDK是否安裝成功 : java -version![]()
出現以上結果說明master00節點的JDK安裝成功。
(5)、將master00節點上的JDK安裝包複製到其餘節點上:deploy.sh jdk /home/hadoop/app/ slave
而後在slave01和slave02節點上重複master00節點上的JDK配置,而且檢查是否成功!
七、Zookeeper安裝。
(1)、上傳zookeeper到app目錄而且解壓。
(2)、重命名爲zookeeper
(3)、修改zookeeper中的配置文件![]()
(4)、經過腳本deploy.sh將zookeeper安裝目錄複製到其餘節點:deploy.sh zookeeper /home/hadoop/app/ slave
(5)、經過腳本runRemoteCmd.sh在全部節點上建立相關目錄:
runRemoteCmd.sh "mkdir -p /home/hadoop/data/zookeeper/zkdata" all
runRemoteCmd.sh "mkdir -p /home/hadoop/data/zookeeper/zkdatalog" allnode
(6)、在3個節點上分別進入zkdata目錄下,建立文件myid,內容分別填寫爲:1, 2, 3,以下圖:
master00:![]()
slave01:![]()
slave02:![]()
(7)、配置zookeeper環境變量
使配置生效:source /etc/profile
注意:每一個節點都要進行配置!!!
(8)、在master00節點上啓動zookeeper![]()
(9)、使用runRemoteCmd.sh腳本,啓動全部節點上的zookeeper:
runRemoteCmd.sh "/home/hadoop/app/zookeeper/bin/zkServer.sh start" zookeeper
(10)、查看全部節點上的QuorumPeerMain進程是否成功:
unRemoteCmd.sh "jps" zookeeper
(11)、查看全部節點上的zookeeper狀態
runRemoteCmd.sh "/home/hadoop/app/zookeeper/bin/zkServer.sh status" zookeeper![]()
若是一個節點爲leader,其餘節點爲follower,說明zookeeper安裝成功。
4、Hadoop集羣搭建。
一、hadoop軟件安裝
(1)上傳並解壓。
(2)、重命名爲hadoop
二、hadoop配置及使用HDFS
(1)修改JAVA_HOME的安裝目錄
(2)、配置core-site.xml文件,如下是個人配置,具體配置請參考hadoop官方文檔
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://cluster1</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/home/hadoop/data/tmp</value>
</property>
<property>
<name>ha.zookeeper.quorum</name>
<value>master00:2181,slave01:2181,slave02:2181</value>
</property>
</configuration>
(3)、配置 hdfs-site.xml文件,如下是個人配置,具體配置請參考hadoop官方文檔
<configuration>
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
<property>
<name>dfs.permissions</name>
<value>false</value>
</property>
<property>
<name>dfs.permissions.enabled</name>
<value>false</value>
</property>
<property>
<name>dfs.nameservices</name>
<value>cluster1</value>
</property>
<property>
<name>dfs.ha.namenodes.cluster1</name>
<value>master00,slave01</value>
</property>
<property>
<name>dfs.namenode.rpc-address.cluster1.master00</name>
<value>master00:9000</value>
</property>
<property>
<name>dfs.namenode.http-address.cluster1.master00</name>
<value>master00:50070</value>
</property>
<property>
<name>dfs.namenode.rpc-address.cluster1.slave01</name>
<value>slave01:9000</value>
</property>
<property>
<name>dfs.namenode.http-address.cluster1.slave01</name>
<value>slave01:50070</value>
</property>
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://master00:8485;slave01:8485;slave02:8485/cluster1</value>
</property>
<property>
<name>dfs.client.failover.proxy.provider.cluster1</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/home/hadoop/data/journaldata/jn</value>
</property>
<property>
<name>dfs.ha.fencing.methods</name>
<value>shell(/bin/true)</value>
</property>
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/home/hadoop/.ssh/id_rsa</value>
</property>
<property>
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value>10000</value>
</property>
<property>
<name>dfs.namenode.handler.count</name>
<value>100</value>
</property>
</configuration>
(4)、配置slaves文件:主要配置DataNode節點所在的主機名。
(5)、向全部節點分發hadoop安裝包
deploy.sh hadoop /home/hadoop/app/ slave
(6)配置hadoop環境變量![]()
使配置生效:source /etc/profile
注意:每一個節點都要進行配置!!!linux(7)、啓動HDFS
1)、啓動全部節點上的zookeeper進程![]()
2)、啓動全部節點上的Journalnode進程
runRemoteCmd.sh "/home/hadoop/app/hadoop/sbin/hadoop-daemon.sh start journalnode" all
3)、首先在主節點(如master00)上格式化
bin/hdfs namenode –format![]()
bin/hdfs zkfc –formatZK![]()
bin/hdfs namenode
4)、與此同時,須要在備節點(如slave01)上執行同步數據
bin/hdfs namenode –bootstrapStandby
5)、slave01同步數據完成後,在master00節點上按下Ctrl+C鍵來結束namenode進程,而後關閉全部節點上的journalnode進程
runRemoteCmd.sh "/home/hadoop/app/hadoop/sbin/hadoop-daemon.sh stop journalnode" all
6)、一鍵啓動HDFS 相關全部進程
sbin/start-dfs.sh
7)、驗證HDFS是否安裝成功
在瀏覽器輸入網址:http://master00:50070,查看Web界面![]()
在瀏覽器輸入網址:http://slave01:50070,查看Web界面![]()
8)、檢測HDFS是否可用
hadoop fs -mkdir /test
hadoop fs -put test.txt /test
hadoop fs -ls /test![]()
三、Hadoop配置使用YARN
(1)、配置mapred-site.xml文件,如下是個人配置,具體配置請參考hadoop官方文檔
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
(2)、配置yarn-site.xml 文件,如下是個人配置,具體配置請參考hadoop官方文檔
<configuration>
<property>
<name>yarn.resourcemanager.connect.retry-interval.ms</name>
<value>2000</value>
</property>
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.ha.automatic-failover.embedded</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yarn-rm-cluster</value>
</property>
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>master00</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>slave01</value>
</property>
<property>
<name>yarn.resourcemanager.recovery.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.zk.state-store.address</name>
<value>master00:2181,slave01:2181,slave02:2181</value>
</property>
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>master00:2181,slave01:2181,slave02:2181</value>
</property>
<property>
<name>yarn.resourcemanager.address.rm1</name>
<value>master00:8032</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address.rm1</name>
<value>master00:8034</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm1</name>
<value>master00:8088</value>
</property>
<property>
<name>yarn.resourcemanager.address.rm2</name>
<value>slave01:8032</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address.rm2</name>
<value>slave01:8034</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm2</name>
<value>slave01:8088</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce_shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
</configuration>
(3)、啓動YARN
1)、在master00上執行啓動YARN命令
sbin/start-yarn.sh
2)、在slave01上執行啓動YARN命令
sbin/yarn-daemon.sh start resourcemanager
3)、在瀏覽器打開Web界面查看
http://master00:8088
http://slave01:8088
4)、檢查ResourceManager狀態
bin/yarn rmadmin -getServiceState rm1
bin/yarn rmadmin -getServiceState rm2
5)、運行WordCount測試
hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jar wordcount /test/test.txt /test/out/
查看做業執行狀態![]()
若是無異常,說明YARN安裝成功
至此Hadoop分佈式集羣搭建成功!!!web