多進程多線程
概念:
進程是程序在計算機上的一次執行活動。當你運行一個程序,你就啓動了一個進程。顯然,程序是死的(靜態的),進程是活的(動態的)。進程能夠分爲系統進程和用戶進程。凡是用於完成操做系統的各類功能的進程就是系統進程,它們就是處於運行狀態下的操做系統自己;用戶進程就沒必要我多講了吧,全部由你啓動的進程都是用戶進程。進程是操做系統進行資源分配的單位。app
多進程和多線程的區別:async
多線程使用的是cpu的一個核,適合io密集型
多進程使用的是cpu的多個核,適合運算密集型ide
組件:函數
Python提供了很是好用的多進程包,multiprocessing,咱們在使用的時候,只須要導入該模塊就能夠了。ui
Multiprocessing支持子進程,通訊,共享數據,執行不一樣形式的同步,提供了Process,Pipe, Lock等組件this
Processspa
1. 建立一個Process對象
p = multiprocessing.Process(target=worker_1, args=(2, ))操作系統
target = 函數名字
args = 函數須要的參數,以tuple的形式傳入
注意: 單個元素的tuple的表現形式線程
multprocessing用到的兩個方法
cpu_count() 統計cpu總數
active_children() 得到全部子進程
Process的經常使用方法
is_alive() 判斷進程是否存活
run() 啓動進程
start() 啓動進程,會自動調用run方法,這個經常使用
join(timeout) 等待進程結束或者直到超時
Process的經常使用屬性
name 進程名字
pid 進程的pid
import multiprocessing # multiprocessing.active_children() 列出存在的子進程 # 1 ->2, 3, 4 #cpu_count() 統計cpu的個數 import time def worker(interval): time.sleep(interval) print("hello world") if __name__ == "__main__": p = multiprocessing.Process(target=worker, args=(5,)) p.start() print(p.is_alive()) p.join(timeout=3) #等待子進程執行完畢或者超時退出 print("end main") print(p.name) print(p.pid)
import multiprocessing import time def worker(name, interval): print("{0} start".format(name)) time.sleep(interval) print("{0} end".format(name)) if __name__ == "__main__": print("main start") print("this Computer has {0}".format(multiprocessing.cpu_count())) p1 = multiprocessing.Process(target=worker, args=("worker1", 2)) p2 = multiprocessing.Process(target=worker, args=("worker2", 3)) p3 = multiprocessing.Process(target=worker, args=("worker3", 4)) p1.start() p2.start() p3.start() for p in multiprocessing.active_children(): print("the pid of {0} is {1}".format(p.name, p.pid)) print("main end")
鎖
import multiprocessing # lock = multiprocessing.Lock() # lock.acquire() 獲取鎖 # lock.release() 釋放鎖 # with lock: # 不加鎖程序 # number +1 # number +3 import time def add(number, value, lock): lock.acquire() try: print("init add{0} number = {1}".format(value, number)) for i in xrange(1, 6): number += value time.sleep(1) print("add{0} number = {1}".format(value, number)) except Exception as e: raise e finally: lock.release() if __name__ == "__main__": lock = multiprocessing.Lock() number = 0 p1 = multiprocessing.Process(target=add, args=(number, 1, lock)) p2 = multiprocessing.Process(target=add, args=(number, 3, lock)) p1.start() p2.start() print("main end")
共享內存
import multiprocessing import time # Value() # Array() def add(number, add_value, lock): lock.acquire() try: print("init add{0} number = {1}".format(add_value, number.value)) for i in xrange(1, 6): number.value += add_value print("##############add{0} has added!############".format(add_value)) time.sleep(1) print("add{0} number = {1}".format(add_value, number.value)) except Exception as e: raise e finally: lock.release() def change(arr): for i in range(len(arr)): arr[i] = -arr[i] if __name__ == "__main__": lock = multiprocessing.Lock() number = multiprocessing.Value('i', 0) arr = multiprocessing.Array('i', range(10)) print(arr[:]) p1 = multiprocessing.Process(target=add, args=(number, 1, lock)) p2 = multiprocessing.Process(target=add, args=(number, 3, lock)) p3 = multiprocessing.Process(target=change, args=(arr,)) p1.start() p2.start() p3.start() p3.join() print(arr[:]) print("main end")
manage
import multiprocessing def worker(d, l): l += range(11, 16) for i in xrange(1, 6): key = "key{0}".format(i) val = "val{0}".format(i) d[key] = val if __name__ == "__main__": manager = multiprocessing.Manager() d = manager.dict() l = manager.list() p = multiprocessing.Process(target=worker, args=(d, l)) p.start() p.join() print(d) print(l) print("main end")
進程池
import multiprocessing import time def worker(msg): print("########start {0}##########".format(msg)) time.sleep(1) print("########end {0}##########".format(msg)) if __name__ == "__main__": print("main start") pool = multiprocessing.Pool(processes=3) for i in xrange(1, 10): msg = "hello {0}".format(i) pool.apply_async(func=worker, args=(msg,)) pool.close() pool.join() #在join以前,必定要調用close,不然報錯。 print("main end")