數據結構中有數組和鏈表來實現對數據的存儲,但這二者基本上是兩個極端。java
數組存儲區間是連續的,佔用內存嚴重,故空間複雜的很大。但數組的二分查找時間複雜度小,爲O(1);數組的特色是:尋址容易,插入和刪除困難;算法
鏈表存儲區間離散,佔用內存比較寬鬆,故空間複雜度很小,但時間複雜度很大,達O(N)。鏈表的特色是:尋址困難,插入和刪除容易。數組
那麼咱們能不能綜合二者的特性,作出一種尋址容易,插入刪除也容易的數據結構?答案是確定的,這就是咱們要提起的哈希表。哈希表((Hash table)既知足了數據的查找方便,同時不佔用太多的內容空間,使用也十分方便。數據結構
哈希表有多種不一樣的實現方法,我接下來解釋的是最經常使用的一種方法—— 拉鍊法,咱們能夠理解爲「鏈表的數組」 ,如圖:less
從上圖咱們能夠發現哈希表是由數組+鏈表組成的,一個長度爲16的數組中,每一個元素存儲的是一個鏈表的頭結點。那麼這些元素是按照什麼樣的規則存儲到數組中呢。通常狀況是經過hash(key)%len得到,也就是元素的key的哈希值對數組長度取模獲得。好比上述哈希表中,12%16=12,28%16=12,108%16=12,140%16=12。因此十二、2八、108以及140都存儲在數組下標爲12的位置。函數
HashMap其實也是一個線性的數組實現的,因此能夠理解爲其存儲數據的容器就是一個線性數組。這可能讓咱們很不解,一個線性的數組怎麼實現按鍵值對來存取數據呢?這裏HashMap有作一些處理。性能
首先HashMap裏面實現一個靜態內部類Entry,其重要的屬性有 key , value, next,從屬性key,value咱們就能很明顯的看出來Entry就是HashMap鍵值對實現的一個基礎bean,咱們上面說到HashMap的基礎就是一個線性數組,這個數組就是Entry[],Map裏面的內容都保存在Entry[]裏面。優化
/** * The table, resized as necessary. Length MUST Always be a power of two. */ transient Entry[] table;
既然是線性數組,爲何能隨機存取?這裏HashMap用了一個小算法,大體是這樣實現:this
// 存儲時: int hash = key.hashCode(); // 這個hashCode方法這裏不詳述,只要理解每一個key的hash是一個固定的int值 int index = hash % Entry[].length; Entry[index] = value; // 取值時: int hash = key.hashCode(); int index = hash % Entry[].length; return Entry[index];
疑問:若是兩個key經過hash%Entry[].length獲得的index相同,會不會有覆蓋的危險?spa
這裏HashMap裏面用到鏈式數據結構的一個概念。上面咱們提到過Entry類裏面有一個next屬性,做用是指向下一個Entry。打個比方, 第一個鍵值對A進來,經過計算其key的hash獲得的index=0,記作:Entry[0] = A。一會後又進來一個鍵值對B,經過計算其index也等於0,如今怎麼辦?HashMap會這樣作:B.next = A,Entry[0] = B,若是又進來C,index也等於0,那麼C.next = B,Entry[0] = C;這樣咱們發現index=0的地方其實存取了A,B,C三個鍵值對,他們經過next這個屬性連接在一塊兒。因此疑問不用擔憂。也就是說數組中存儲的是最後插入的元素。到這裏爲止,HashMap的大體實現,咱們應該已經清楚了。
public V put(K key, V value) { if (key == null) return putForNullKey(value); //null老是放在數組的第一個鏈表中 int hash = hash(key.hashCode()); int i = indexFor(hash, table.length); //遍歷鏈表 for (Entry<K,V> e = table[i]; e != null; e = e.next) { Object k; //若是key在鏈表中已存在,則替換爲新value if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } modCount++; addEntry(hash, key, value, i); return null; } void addEntry(int hash, K key, V value, int bucketIndex) { Entry<K,V> e = table[bucketIndex]; table[bucketIndex] = new Entry<K,V>(hash, key, value, e); //參數e, 是Entry.next //若是size超過threshold,則擴充table大小。再散列 if (size++ >= threshold) resize(2 * table.length); }
固然HashMap裏面也包含一些優化方面的實現,這裏也說一下。好比:Entry[]的長度必定後,隨着map裏面數據的愈來愈長,這樣同一個index的鏈就會很長,會不會影響性能?HashMap裏面設置一個因子,隨着map的size愈來愈大,Entry[]會以必定的規則加長長度。
public V get(Object key) { if (key == null) return getForNullKey(); int hash = hash(key.hashCode()); //先定位到數組元素,再遍歷該元素處的鏈表 for (Entry<K,V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) return e.value; } return null; }
null key老是存放在Entry[]數組的第一個元素。
private V putForNullKey(V value) { for (Entry<K,V> e = table[0]; e != null; e = e.next) { if (e.key == null) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } modCount++; addEntry(0, null, value, 0); return null; } private V getForNullKey() { for (Entry<K,V> e = table[0]; e != null; e = e.next) { if (e.key == null) return e.value; } return null; }
HashMap存取時,都須要計算當前key應該對應Entry[]數組哪一個元素,即計算數組下標;算法以下:
/** * Returns index for hash code h. */ static int indexFor(int h, int length) { return h & (length-1); }
按位取並,做用上至關於取模mod或者取餘%。
這意味着數組下標相同,並不表示hashCode相同。
public HashMap(int initialCapacity, float loadFactor) { ..... // Find a power of 2 >= initialCapacity int capacity = 1; while (capacity < initialCapacity) capacity <<= 1; this.loadFactor = loadFactor; threshold = (int)(capacity * loadFactor); table = new Entry[capacity]; init(); }
注意table初始大小並非構造函數中的initialCapacity!!
而是 >= initialCapacity的2的n次冪!!!!
————爲何這麼設計呢?——
Java中hashmap的解決辦法就是採用的鏈地址法。
當哈希表的容量超過默認容量時,必須調整table的大小。當容量已經達到最大可能值時,那麼該方法就將容量調整到Integer.MAX_VALUE返回,這時,須要建立一張新表,將原表的映射到新表中。
/** * Rehashes the contents of this map into a new array with a * larger capacity. This method is called automatically when the * number of keys in this map reaches its threshold. * * If current capacity is MAXIMUM_CAPACITY, this method does not * resize the map, but sets threshold to Integer.MAX_VALUE. * This has the effect of preventing future calls. * * @param newCapacity the new capacity, MUST be a power of two; * must be greater than current capacity unless current * capacity is MAXIMUM_CAPACITY (in which case value * is irrelevant). */ void resize(int newCapacity) { Entry[] oldTable = table; int oldCapacity = oldTable.length; if (oldCapacity == MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return; } Entry[] newTable = new Entry[newCapacity]; transfer(newTable); table = newTable; threshold = (int)(newCapacity * loadFactor); } /** * Transfers all entries from current table to newTable. */ void transfer(Entry[] newTable) { Entry[] src = table; int newCapacity = newTable.length; for (int j = 0; j < src.length; j++) { Entry<K,V> e = src[j]; if (e != null) { src[j] = null; do { Entry<K,V> next = e.next; //從新計算index int i = indexFor(e.hash, newCapacity); e.next = newTable[i]; newTable[i] = e; e = next; } while (e != null); } } }
轉自:http://blog.csdn.net/vking_wang/article/details/14166593