InputThere are multiple test cases. Process to the End of File.
Each test case contains 7 nonnegative integers as follows:
N
A0 AX AY
B0 BX BY
N is no more than 10 18, and all the other integers are no more than 2×10 9.OutputFor each test case, output AoD(N) modulo 1,000,000,007.Sample Inputios
1 1 2 3 4 5 6 2 1 2 3 4 5 6 3 1 2 3 4 5 6
Sample Outputspa
4 134 1902
| AX 0 AXBY AXBY 0 |code
| 0 BX AYBX AYBX 0 |blog
{a[i-1] b[i-1] a[i-1]*b[i-1] AoD[i-1] 1}* | 0 0 AXBX AXBX 0 | = {a[i] b[i] a[i]*b[i] AoD[i] 1}ip
| 0 0 0 1 0 |string
| AY BY AYBY AYBY 1 |it
#include<iostream> #include<cstdio> #include<cmath> #include<cstring> #include<algorithm> #include<queue> #include<vector> #include<cmath> #include<map> #include<stack> #include<set> #include<string> using namespace std; typedef unsigned long long LL; #define MAXN 30 #define L 100006 #define MOD 1000000007 #define INF 1000000009 const double eps = 1e-9; /* 這個題目跟以前作的有必定區別,以前作的大可能是表示一個序列的轉移矩陣(用一列 列向量表示一個序列的幾項) 而這個題給出了 an 的轉移關係 bn的轉移關係 要求 an*bn的前n項和 應當擴充列的範圍(矩陣表達的含義增長) 【An Bn An*Bn Sum(n)】 轉移關係是很好列的,剩下的就是矩陣快速冪 */ LL n, a0, ax, ay, b0, bx, by; struct Mat { LL a[5][5]; Mat() { memset(a, 0, sizeof(a)); } Mat operator*(const Mat& rhs) { Mat ret; for (int i = 0; i < 5; i++) { for (int j = 0; j < 5; j++) { if(a[i][j]) { for (int k = 0; k < 5; k++) { ret.a[i][k] = (ret.a[i][k] + a[i][j] * rhs.a[j][k]) % MOD; } } } } return ret; } }; Mat fpow(Mat m, LL b) { Mat ans; for (int i = 0; i < 5; i++) ans.a[i][i] = 1; while (b != 0) { if (b & 1) ans = m * ans; m = m * m; b = b / 2; } return ans; } int main() { while (scanf("%lld", &n) != EOF) { scanf("%lld%lld%lld%lld%lld%lld", &a0, &ax, &ay, &b0, &bx, &by); if (n == 0) { printf("0\n"); continue; } Mat M; M.a[0][0] = ax%MOD, M.a[0][2] = ax%MOD*by%MOD, M.a[0][3] = ax%MOD*by%MOD; M.a[1][1] = bx%MOD, M.a[1][2] = M.a[1][3] = bx%MOD*ay%MOD; M.a[2][2] = M.a[2][3] = ax%MOD*bx%MOD; M.a[3][3] = 1; M.a[4][0] = ay%MOD, M.a[4][1] = by%MOD, M.a[4][2] = M.a[4][3] = ay%MOD*by%MOD, M.a[4][4] = 1; if (n == 1) printf("%lld\n", a0*b0%MOD); else { M = fpow(M, n - 1); LL ans = 0; ans = (ans + a0*M.a[0][3] % MOD) % MOD; ans = (ans + b0*M.a[1][3] % MOD) % MOD; ans = (ans + +a0%MOD*b0%MOD*M.a[2][3] % MOD) % MOD; ans = (ans + a0%MOD*b0%MOD*M.a[3][3] % MOD) % MOD; ans = (ans +M.a[4][3] % MOD) % MOD; printf("%lld\n", ans); } } }