轉載請註明出處:http://www.cnblogs.com/willnote/p/6746499.htmlhtml
在清華大學 TUNA 鏡像源選擇對應的操做系統與所需的Python版本下載Anaconda安裝包。Windows環境下的安裝包直接執行.exe文件進行安裝便可,Ubuntu環境下在終端執行python
$ bash Anaconda2-4.3.1-Linux-x86_64.sh #Python 2.7版本
或者linux
$ bash Anaconda3-4.3.1-Linux-x86_64.sh #Python 3.5 版本
在安裝的過程當中,會詢問安裝路徑,按回車便可。以後會詢問是否將Anaconda安裝路徑加入到環境變量(.bashrc)中,輸入yes,這樣之後在終端中輸入python便可直接進入Anaconda的Python版本(若是你的系統中以前安裝過Python,自行選擇yes or no)。安裝成功後,會有當前用戶根目錄下生成一個anaconda2的文件夾,裏面就是安裝好的內容shell
查詢安裝信息vim
$ conda info
查詢當前已經安裝的庫api
$ conda list
安裝庫(***表明庫名稱)bash
$ conda install ***
更新庫工具
$ conda update ***
官方下載更新工具包的速度很慢,因此繼續添加清華大學 TUNA提供的Anaconda倉庫鏡像,在終端或cmd中輸入以下命令進行添加學習
$ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ $ conda config --set show_channel_urls yes $ conda install numpy #測試是否添加成功
以後會自動在用戶根目錄生成「.condarc」文件,Ubuntu環境下路徑爲~/.condarc,Windows環境下路徑爲C:\用戶\your_user_name\.condarc測試
channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ - defaults show_channel_urls: yes
若是要刪除鏡像,直接刪除「.condarc」文件便可
在終端或cmd中輸入如下命令搜索當前可用的tensorflow版本
$ anaconda search -t conda tensorflow Using Anaconda API: https://api.anaconda.org Run 'anaconda show <USER/PACKAGE>' to get more details: Packages: Name | Version | Package Types | Platforms ------------------------- | ------ | --------------- | --------------- HCC/tensorflow | 1.0.0 | conda | linux-64 HCC/tensorflow-cpucompat | 1.0.0 | conda | linux-64 HCC/tensorflow-fma | 1.0.0 | conda | linux-64 SentientPrime/tensorflow | 0.6.0 | conda | osx-64 : TensorFlow helps the tensors flow acellera/tensorflow-cuda | 0.12.1 | conda | linux-64 anaconda/tensorflow | 1.0.1 | conda | linux-64 anaconda/tensorflow-gpu | 1.0.1 | conda | linux-64 conda-forge/tensorflow | 1.0.0 | conda | linux-64, win-64, osx-64 : TensorFlow helps the tensors flow creditx/tensorflow | 0.9.0 | conda | linux-64 : TensorFlow helps the tensors flow derickl/tensorflow | 0.12.1 | conda | osx-64 dhirschfeld/tensorflow | 0.12.0rc0 | conda | win-64 dseuss/tensorflow | | conda | osx-64 guyanhua/tensorflow | 1.0.0 | conda | linux-64 ijstokes/tensorflow | 2017.03.03.1349 | conda, ipynb | linux-64 jjh_cio_testing/tensorflow | 1.0.1 | conda | linux-64 jjh_cio_testing/tensorflow-gpu | 1.0.1 | conda | linux-64 jjh_ppc64le/tensorflow | 1.0.1 | conda | linux-ppc64le jjh_ppc64le/tensorflow-gpu | 1.0.1 | conda | linux-ppc64le jjhelmus/tensorflow | 0.12.0rc0 | conda, pypi | linux-64, osx-64 : TensorFlow helps the tensors flow jjhelmus/tensorflow-gpu | 1.0.1 | conda | linux-64 kevin-keraudren/tensorflow | 0.9.0 | conda | linux-64 lcls-rhel7/tensorflow | 0.12.1 | conda | linux-64 marta-sd/tensorflow | 1.0.1 | conda | linux-64 : TensorFlow helps the tensors flow memex/tensorflow | 0.5.0 | conda | linux-64, osx-64 : TensorFlow helps the tensors flow mhworth/tensorflow | 0.7.1 | conda | osx-64 : TensorFlow helps the tensors flow miovision/tensorflow | 0.10.0.gpu | conda | linux-64, osx-64 msarahan/tensorflow | 1.0.0rc2 | conda | linux-64 mutirri/tensorflow | 0.10.0rc0 | conda | linux-64 mwojcikowski/tensorflow | 1.0.1 | conda | linux-64 rdonnelly/tensorflow | 0.9.0 | conda | linux-64 rdonnellyr/r-tensorflow | 0.4.0 | conda | osx-64 test_org_002/tensorflow | 0.10.0rc0 | conda | Found 32 packages
選擇一個較新的CPU或GPU版本,如jjh_cio_testing/tensorflow-gpu的1.0.1版本,輸入以下命令查詢安裝命令
$ anaconda show jjh_cio_testing/tensorflow-gpu Using Anaconda API: https://api.anaconda.org Name: tensorflow-gpu Summary: Access: public Package Types: conda Versions: + 1.0.1 To install this package with conda run: conda install --channel https://conda.anaconda.org/jjh_cio_testing tensorflow-gpu
使用最後一行的提示命令進行安裝
$ conda install --channel https://conda.anaconda.org/jjh_cio_testing tensorflow-gpu Fetching package metadata ............. Solving package specifications: . Package plan for installation in environment /home/will/anaconda2: The following packages will be SUPERSEDED by a higher-priority channel: tensorflow-gpu: 1.0.1-py27_4 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free --> 1.0.1-py27_4 jjh_cio_testing Proceed ([y]/n)?
conda會自動檢測安裝此版本的Tensorflow所依賴的庫,若是你的Anaconda缺乏這些依賴庫,會提示你安裝。由於我以前已經安裝過了,因此這裏只提示我安裝Tensorflow。輸入y並回車以後等待安裝結束便可
進入python,輸入
import tensorflow as tf
若是沒有報錯說明安裝成功。