設置keyFrameValues、duration、updateListener 啓動動畫後,AnimatorUpdateListener#onAnimationUpdate()方法每隔 1/60s 都會被回調一次,能夠從animation中拿到當前幀對應的數據。bash
private fun startAnimator() {
val animator = ValueAnimator.ofFloat(0f, 1f)
animator.duration = 1000
animator.repeatCount = 10
animator.repeatMode = ValueAnimator.REVERSE
animator.interpolator = object : TimeInterpolator {
override fun getInterpolation(input: Float): Float {
return (Math.cos((input + 1) * Math.PI) / 2.0f).toFloat() + 0.5f //AccelerateDecelerate
}
}
animator.addUpdateListener(object : ValueAnimator.AnimatorUpdateListener {
override fun onAnimationUpdate(animation: ValueAnimator) {
println(animation.animatedValue)
}
})
animator.start()
}
複製代碼
onAnimationUpdate
是如何實現的?animatedValue
是如何計算出來的?onAnimationUpdate
的調用鏈從
Choreographer
中的
FrameDisplayEventReceiver
開始、經由
AnimationHandler
、一直傳到
ValueAnimator
。
咱們先來看下AnimationHandler
。app
/**
* This custom, static handler handles the timing pulse that is shared by all active
* ValueAnimators. This approach ensures that the setting of animation values will happen on the
* same thread that animations start on, and that all animations will share the same times for
* calculating their values, which makes synchronizing animations possible.
*
* The handler uses the Choreographer by default for doing periodic callbacks. A custom
* AnimationFrameCallbackProvider can be set on the handler to provide timing pulse that
* may be independent of UI frame update. This could be useful in testing.
*
* @hide
*/
public class AnimationHandler{
複製代碼
AnimationHandler
是一個全局單例,被全部ValueAnimators
共享,以便實現動畫同步,默認使用Choreographer
完成周期性回調。 AnimationHandler
與 ValueAnimator
(implements AnimationHandler.AnimationFrameCallback) 的交互主要有如下幾點:ide
addAnimationCallback
: 動畫開始時,ValueAnimator
將本身做爲AnimationFrameCallback註冊到AnimationHandler中。removeAnimationCallback
: 動畫結束時,ValueAnimator
移除本身在AnimationHandler
中的註冊。
ValueAnimator實現的回調被傳到AnimationHandler中了,通過一系列調用傳遞,最終走到了Choreographa中的FrameDisplayEventReceiver#onVsync()咱們再來看看FrameDisplayEventReceiver的代碼。 函數
FrameDisplayEventReceiver
繼承自抽象類
DisplayEventReceiver
,
FrameDisplayEventReceiver
有如下幾個關鍵方法:
scheduleVsync()
: Schedules a single vertical sync pulse. 用白話說就是,下次v-sync的時候通知我(回調onVsync)。onVsync()
: Called when a vertical sync pulse is received./**
* Provides a low-level mechanism for an application to receive display events
* such as vertical sync.
* ...
*/
public abstract class DisplayEventReceiver {
public DisplayEventReceiver(Looper looper, int vsyncSource) {
// ...
mReceiverPtr = nativeInit(new WeakReference<DisplayEventReceiver>(this), mMessageQueue,
vsyncSource);
//...
}
public void scheduleVsync() {
// ...
nativeScheduleVsync(mReceiverPtr);
}
// Called from native code.
private void dispatchVsync(long timestampNanos, int builtInDisplayId, int frame) {
onVsync(timestampNanos, builtInDisplayId, frame);
}
/**
* Called when a vertical sync pulse is received.
* The recipient should render a frame and then call {@link #scheduleVsync}
* to schedule the next vertical sync pulse.
public void onVsync(long timestampNanos, int builtInDisplayId, int frame) {
}
複製代碼
FrameDisplayEventReceiver
的源碼oop
private final class FrameDisplayEventReceiver extends DisplayEventReceiver
implements Runnable {
// ...
@Override
public void onVsync(long timestampNanos, int builtInDisplayId, int frame) {
// ...
Message msg = Message.obtain(mHandler, this);
msg.setAsynchronous(true);
mHandler.sendMessageAtTime(msg, timestampNanos / TimeUtils.NANOS_PER_MS);
}
@Override
public void run() {
mHavePendingVsync = false;
doFrame(mTimestampNanos, mFrame);
}
}
複製代碼
void doFrame(long frameTimeNanos, int frame) {
final long startNanos;
synchronized (mLock) {
// ...
if (frameTimeNanos < mLastFrameTimeNanos) {
//...
scheduleVsyncLocked();
return;
}
}
private void scheduleVsyncLocked() {
mDisplayEventReceiver.scheduleVsync();
}
複製代碼
結合前面的DisplayEventReceiver
的源碼分析咱們知道scheduleVsync最後會觸發onVsync,因此完整的流程是:源碼分析
onVsync() -> mHandler.sendMessageAtTime() -> run() -> doFrame() -> scheduleVsyncLocked -> mDisplayEventReceiver.scheduleVsync() -> onVsync()
動畫
簡化一下就是:ui
onVsync() -> doFrame() -> onVsync()
this
經過上面的循環,onVsync()每隔1/60s會回調一次,方法調用層層傳遞,最後就傳遞到了咱們重寫的AnimatorUpdateListener#onAnimationUpdate()中。 因爲doFrame()中會對時間作判斷,動畫結束後不會調scheduleVsync(),因此循環在動畫結束就中止了。spa
總結
綜上,動畫幀回調的傳遞過程以下。
animatedValue
的計算邏輯這是咱們在動畫執行過程當中每一幀計算值的方法
注:調用鏈是doAnimationFrame() -> animateBasedOnTime() -> aniateValue()
void animateValue(float fraction) {
fraction = mInterpolator.getInterpolation(fraction);
mCurrentFraction = fraction;
int numValues = mValues.length;
for (int i = 0; i < numValues; ++i) {
mValues[i].calculateValue(fraction); // 計算動畫value
}
if (mUpdateListeners != null) {
int numListeners = mUpdateListeners.size();
for (int i = 0; i < numListeners; ++i) {
mUpdateListeners.get(i).onAnimationUpdate(this);
}
}
}
複製代碼
能夠看到在計算的時候,先用mInterpolator對fraction進行處理。 默認是AccelerateDecelerateInterpolator
public float getInterpolation(float input) {
return (float)(Math.cos((input + 1) * Math.PI) / 2.0f) + 0.5f;
}
複製代碼
通過三角函數變換,輸入fraction的輸出結果再也不是線性,而是先加速再減速的效果(導數爲
0.5PI*sin(PI*(x+1))
)。
PropertyValuesHolder#calculateValue
void calculateValue(float fraction) {
Object value = mKeyframes.getValue(fraction);
mAnimatedValue = mConverter == null ? value : mConverter.convert(value);
}
複製代碼