【Java】Map總結和源碼註釋

前言

Map爲一個Java中一個重要的數據結構,主要表示<key, value>的映射關係對。本文包括了相關Map數據結構的總結和源碼的閱讀註釋。java

HashMap

初始化,能夠選擇第二個初始化函數來設置裝載能力threshold和裝載係數loadFactor數組

  • HashMap()
  • HashMap(int initialCapacity, float loadFactor)

HashMap中定義的一些常量:安全

  • static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;數據結構

    缺省的初始大小app

  • static final int MAXIMUM_CAPACITY = 1 << 30;函數

    最大限定大小,當超過這個值時,會resize()Integer.MAX_VALUEthis

  • static final float DEFAULT_LOAD_FACTOR = 0.75f;線程

    threshold = capacity*laodFactorcode

HashMap的大小始終爲2的倍數,若插入時超過threshold時,會調用resize()來自動將大小擴大一倍。繼承

值在Node<K,V>[] table中的定位方式爲(n-1)&hash(key)這也是resize的時候直接double的緣由

基本方法:

  • V put(K key, V value):若key不存在,則插入;若key存在,則更新value值,返回舊的value
  • V putIfAbsent(K key, V value)
  • V get(Object key):get不存在的key時會返回null,須要注意NullPointerException
  • int size()

遍歷方式

  • forEach(lambda)經過lambda表達式進行遍歷

  • entrySet().iterator()

    Iterator iter = map.entrySet().iterator();
    while(iter.hasNext()){
      Map.Entry e = (Map.Entry)iter.next();
        key = e.getKey();
        value = e.getValue();
    }
  • keySet().iterator()

    Iterator iter = map.keySet().iterator();
    while(iter.hasNext()){
        key = iter.next();
        value = map.get(key);
    }
  • values().iterator()

resize()

final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {
        if (oldCap >= MAXIMUM_CAPACITY) { // 舊的大小已經達到設置的最大值時再也不增長,改變閾值
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && // 新大小=舊大小*2
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // 閾值也一塊兒*2
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // oldCap爲0時處於初始化階段,進行初始化
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    if (oldTab != null) { // 將舊map移到新map中
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null; // 置爲null值方便GC
                if (e.next == null) // 桶中沒有鏈,直接賦值
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode) // 若是桶中爲紅黑樹
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) { // 若爲真,則在原來位置不變
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {  // 爲假時說明擴容後原鏈表中的節點位置發生了改變
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead; // 原鏈表所在
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead; // 擴容部分節點位置加上了oldCap
                    }
                }
            }
        }
    }
    return newTab;
}

衝突解決

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length; // 數組爲空的狀況
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null); // 沒有衝突直接放入
    else {
        Node<K,V> e; K k;
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;  // 有衝突可是key相同,則覆蓋原來的值
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); // 若是已經拉成紅黑樹則插入樹中
        else {
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null); // 找到鏈表尾插入鏈表中
                    if (binCount >= TREEIFY_THRESHOLD - 1) // 若是桶的鏈長度超過閾值則拉成紅黑樹
                        treeifyBin(tab, hash);
                    break;
                }
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break; // 在鏈中找到相同的key則覆蓋其值
                p = e;
            }
        }
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}

Hashtable

初始化函數:

public Hashtable() {
    this(11, 0.75f);
}

默認下initialCapacity = 11loadFactor = 0.75

插入操做put(K,V)

public synchronized V put(K key, V value) {
    // Make sure the value is not null
    if (value == null) {
        throw new NullPointerException();
    }

    // Makes sure the key is not already in the hashtable.
    Entry<?,?> tab[] = table;
    int hash = key.hashCode();
    int index = (hash & 0x7FFFFFFF) % tab.length;
    @SuppressWarnings("unchecked")
    Entry<K,V> entry = (Entry<K,V>)tab[index];
    for(; entry != null ; entry = entry.next) {
        if ((entry.hash == hash) && entry.key.equals(key)) { // 找到相同的key則覆蓋原值
            V old = entry.value;
            entry.value = value;
            return old;
        }
    }

    addEntry(hash, key, value, index);
    return null;
}

Hashtable的hash尋址方法爲(hash & 0x7FFFFFFF) % tab.length,當插入的key以前有值時返回舊值,不然返回null。

addEntry(hash, key, value, index),當table的大小不夠時,執行rehash()擴大table

private void addEntry(int hash, K key, V value, int index) {
    Entry<?,?> tab[] = table;
    if (count >= threshold) {
        // Rehash the table if the threshold is exceeded
        rehash();

        tab = table;
        hash = key.hashCode();
        index = (hash & 0x7FFFFFFF) % tab.length;
    }

    // Creates the new entry.
    @SuppressWarnings("unchecked")
    Entry<K,V> e = (Entry<K,V>) tab[index];
    tab[index] = new Entry<>(hash, key, value, e);
    count++;
    modCount++;
}

rehash():

protected void rehash() {
    int oldCapacity = table.length;
    Entry<?,?>[] oldMap = table;

    // overflow-conscious code
    int newCapacity = (oldCapacity << 1) + 1; // 新大小=原大小*2+1
    if (newCapacity - MAX_ARRAY_SIZE > 0) {
        if (oldCapacity == MAX_ARRAY_SIZE)
            // Keep running with MAX_ARRAY_SIZE buckets
            return;
        newCapacity = MAX_ARRAY_SIZE;
    }
    Entry<?,?>[] newMap = new Entry<?,?>[newCapacity];

    modCount++;
    threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1); // 更新閾值
    table = newMap;

    for (int i = oldCapacity ; i-- > 0 ;) { // 將舊map中的值一道新map
        for (Entry<K,V> old = (Entry<K,V>)oldMap[i] ; old != null ; ) {
            Entry<K,V> e = old;
            old = old.next;

            int index = (e.hash & 0x7FFFFFFF) % newCapacity;
            e.next = (Entry<K,V>)newMap[index];
            newMap[index] = e;
        }
    }
}

與HashMap的區別

  • HashMap 繼承自AbstractMap類,Hashtable繼承自Dictionary類

  • Hashtable中的方法均用sychronized關鍵字修飾,爲線程安全
  • 擴容方法不一樣,HashMap直接double,使得大小始終是2的倍數,Hashtable在double後加1
  • 在table中的查找方式不一樣:HashMap爲hash&(n-1),Hashtable爲(hash & 0x7FFFFFFF) % tab.length

TreeMap

TreeMap的本質是紅黑樹,紅黑樹是一種特殊的二叉查找樹,因此TreeMap中的節點都是有序的。

TreeMap中節點Entry的定義爲

static final class Entry<K,V> implements Map.Entry<K,V> {
    K key;
    V value;
    Entry<K,V> left;
    Entry<K,V> right;
    Entry<K,V> parent;
    boolean color = BLACK;
}

初始化函數:

public TreeMap() {
    comparator = null;
}
public TreeMap(Comparator<? super K> comparator) {
    this.comparator = comparator;
}

TreeMap支持自定義的比較器,如果使用空初始化函數,則默認爲key的天然順序

/**
     * The comparator used to maintain order in this tree map, or
     * null if it uses the natural ordering of its keys.
     *
     * @serial
     */
private final Comparator<? super K> comparator;

插入操做put(K,V)

public V put(K key, V value) {
    Entry<K,V> t = root;
    if (t == null) { // root爲空則直接new
        compare(key, key); // type (and possibly null) check

        root = new Entry<>(key, value, null);
        size = 1;
        modCount++;
        return null;
    }
    int cmp;
    Entry<K,V> parent;
    // split comparator and comparable paths
    Comparator<? super K> cpr = comparator;
    if (cpr != null) { // 自定義comparator時
        do {
            parent = t;
            cmp = cpr.compare(key, t.key);
            if (cmp < 0)
                t = t.left;
            else if (cmp > 0)
                t = t.right;
            else
                return t.setValue(value);   // 若是key相等則直接覆蓋value
        } while (t != null);
    }
    else {  // 使用key的comparable接口
        if (key == null)
            throw new NullPointerException();
        @SuppressWarnings("unchecked")
        Comparable<? super K> k = (Comparable<? super K>) key;
        do {
            parent = t;
            cmp = k.compareTo(t.key);
            if (cmp < 0)
                t = t.left;
            else if (cmp > 0)
                t = t.right;
            else
                return t.setValue(value); //找到相同的key則直接覆蓋value返回
        } while (t != null);
    }
    Entry<K,V> e = new Entry<>(key, value, parent); // 插入節點
    if (cmp < 0)
        parent.left = e;
    else
        parent.right = e;
    fixAfterInsertion(e); // 紅黑樹自平衡過程
    size++;
    modCount++;
    return null;
}

插入後紅黑樹的自平衡過程:

private void fixAfterInsertion(Entry<K,V> x) {
    x.color = RED; // 設插入節點的顏色爲紅

    while (x != null && x != root && x.parent.color == RED) { // 當x.parent爲黑時樹已經平衡
        if (parentOf(x) == leftOf(parentOf(parentOf(x)))) { // x.parent是祖父節點的左子節點
            Entry<K,V> y = rightOf(parentOf(parentOf(x))); // x的uncle節點
            if (colorOf(y) == RED) { // uncle爲紅的時候recolor
                setColor(parentOf(x), BLACK);
                setColor(y, BLACK);
                setColor(parentOf(parentOf(x)), RED);
                x = parentOf(parentOf(x)); // 向上變色直到知足平衡條件
            } else { // uncle爲黑的時候則須要rotate
                if (x == rightOf(parentOf(x))) { // 左右的狀況,向左旋轉
                    x = parentOf(x);
                    rotateLeft(x);
                }
                setColor(parentOf(x), BLACK);
                setColor(parentOf(parentOf(x)), RED);
                rotateRight(parentOf(parentOf(x)));
            }
        } else {
            Entry<K,V> y = leftOf(parentOf(parentOf(x)));
            if (colorOf(y) == RED) {
                setColor(parentOf(x), BLACK);
                setColor(y, BLACK);
                setColor(parentOf(parentOf(x)), RED);
                x = parentOf(parentOf(x));
            } else {
                if (x == leftOf(parentOf(x))) { // 右左的狀況,向右旋轉
                    x = parentOf(x);
                    rotateRight(x);
                }
                setColor(parentOf(x), BLACK);
                setColor(parentOf(parentOf(x)), RED);
                rotateLeft(parentOf(parentOf(x)));
            }
        }
    }
    root.color = BLACK;
}

若有不對請多指正😝

相關文章
相關標籤/搜索