Android 教你如何發現 APP 卡頓

最近部門打算優化下 APP 在低端機上的卡頓狀況,既然想優化,就必須獲取卡頓狀況,那麼如何獲取卡頓狀況就是本文目的。javascript

通常主線程過多的 UI 繪製、大量的 IO 操做或是大量的計算操做佔用 CPU,致使 App 界面卡頓。只要咱們能在發生卡頓的時候,捕捉到主線程的堆棧信息和系統的資源使用信息,便可準確分析卡頓發生在什麼函數,資源佔用狀況如何。那麼問題就是如何有效檢測 Android 主線程的卡頓發生?html

用 adb 系統工具觀察 App 的卡頓數據狀況,試圖重現場景來定位問題。java

經常使用的方式是使用 adb SurfaceFlinger 服務和 adb gfxinfo 功能,在自動化操做 app 的過程當中,使用 adb 獲取數據來監控 app 的流暢狀況,發現出現出現卡頓的時間段,尋找出現卡頓的場景和操做。android

方式1:adb shell dumpsysSurfaceFlinger

使用 ‘adb shell dumpsysSurfaceFlinger’ 命令便可獲取最近 127 幀的數據,經過按期執行 adb 命令,獲取幀數來計算出幀率 FPS。shell

方式2:adb shell dumpsys gfxinfo

使用 ‘adb shell dumpsys gfxinfo’ 命令便可獲取最新 128 幀的繪製信息,詳細包括每一幀繪製的 Draw,Process,Execute 三個過程的耗時,若是這三個時間總和超過 16.6ms 即認爲是發生了卡頓。app

已有的兩種方案比較適合衡量回歸卡頓問題的修復效果和判斷某些特定場景下是否有卡頓狀況,然而,這樣的方式有幾個明顯的不足:ide

  • 通常很難構造實際用戶卡頓的環境來重現;函數

  • 這種方式操做起來比較麻煩,需編寫自動化用例,沒法覆蓋大量的可疑場景,測試重現耗時耗人力;工具

  • 沒法衡量靜態頁面的卡頓狀況;oop

  • 出現卡頓的時候app沒法及時獲取運行狀態和信息,開發定位困難。

隨着對Android 源碼的深刻研究,也有了其餘兩種比較方便的方式,而且這兩種方式侵入性小,佔用內存低,可以更好的用在實際場景中:

  1. 利用UI線程的Looper打印的日誌匹配;

  2. 使用Choreographer.FrameCallback

利用 UI 線程的 Looper 打印的日誌匹配

Android 主線程更新 UI。若是界面1秒鐘刷新少於 60 次,即 FPS 小於 60,用戶就會產生卡頓感受。簡單來講,Android 使用消息機制進行 UI 更新,UI 線程有個 Looper,在其 loop方法中會不斷取出 message,調用其綁定的 Handler 在 UI 線程執行。若是在 handler 的 dispatchMesaage 方法裏有耗時操做,就會發生卡頓。

下面來看下 Looper.loop( ) 的源碼

public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        // Allow overriding a threshold with a system prop. e.g.
        // adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
        final int thresholdOverride =
                SystemProperties.getInt("log.looper."
                        + Process.myUid() + "."
                        + Thread.currentThread().getName()
                        + ".slow", 0);

        boolean slowDeliveryDetected = false;

        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }
            // Make sure the observer won't change while processing a transaction.
            final Observer observer = sObserver;

            final long traceTag = me.mTraceTag;
            long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
            long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
            if (thresholdOverride > 0) {
                slowDispatchThresholdMs = thresholdOverride;
                slowDeliveryThresholdMs = thresholdOverride;
            }
            final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
            final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);

            final boolean needStartTime = logSlowDelivery || logSlowDispatch;
            final boolean needEndTime = logSlowDispatch;

            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }

            final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
            final long dispatchEnd;
            Object token = null;
            if (observer != null) {
                token = observer.messageDispatchStarting();
            }
            long origWorkSource = ThreadLocalWorkSource.setUid(msg.workSourceUid);
            try {
                msg.target.dispatchMessage(msg);
                if (observer != null) {
                    observer.messageDispatched(token, msg);
                }
                dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
            } catch (Exception exception) {
                if (observer != null) {
                    observer.dispatchingThrewException(token, msg, exception);
                }
                throw exception;
            } finally {
                ThreadLocalWorkSource.restore(origWorkSource);
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            if (logSlowDelivery) {
                if (slowDeliveryDetected) {
                    if ((dispatchStart - msg.when) <= 10) {
                        Slog.w(TAG, "Drained");
                        slowDeliveryDetected = false;
                    }
                } else {
                    if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
                            msg)) {
                        // Once we write a slow delivery log, suppress until the queue drains.
                        slowDeliveryDetected = true;
                    }
                }
            }
            if (logSlowDispatch) {
                showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
            }

            if (logging != null) {
 logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);             }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycleUnchecked();
        }
    }

代碼中兩處標紅的地方,就是 msg.target.dispatchMessage(msg) 的執行先後索打印的 log。經過測量處理時間就能檢測到部分UI線程是否有耗時的操做。注意到這行執行代碼的先後,有兩個 logging.println 函數,若是設置了logging,會分別打印出 」>>>>> Dispatching to 「 和 」<<<<< Finished to 「 這樣的日誌,這樣咱們就能夠經過兩次log的時間差值,來計算 dispatchMessage 的執行時間,從而設置閾值判斷是否發生了卡頓。

那麼如何設置 logging 呢?

咱們看下面的代碼:

/**
     * Control logging of messages as they are processed by this Looper.  If
     * enabled, a log message will be written to <var>printer</var>
     * at the beginning and ending of each message dispatch, identifying the
     * target Handler and message contents.
     *
     * @param printer A Printer object that will receive log messages, or
     * null to disable message logging.
     */
public final class Looper { private Printer mLogging; public void setMessageLogging(@Nullable Printer printer) { mLogging = printer; } } 

public interface Printer { void println(String x); }

Looper 的 mLogging 是私有的,而且提供了 setMessageLogging(@Nullable Printer printer) 方法,因此咱們能夠本身實現一個 Printer,在經過 setMessageLogging() 方法傳入便可,代碼以下: 

public class BlockDetectByPrinter {
    
    public static void start() {
        Looper.getMainLooper().setMessageLogging(new Printer() {
            private static final String START = ">>>>> Dispatching";
            private static final String END = "<<<<< Finished";

            @Override
            public void println(String x) {
                if (x.startsWith(START)) {
                    LogMonitor.getInstance().startMonitor();
                }
                if (x.startsWith(END)) {
                    LogMonitor.getInstance().removeMonitor();
                }
            }
        });
    }
}

設置了logging後,loop方法會回調 logging.println 打印出每次消息執行的時間日誌:」>>>>> Dispatching to 「和」<<<<< Finished to 「。BlockDetectByPrinter 的使用則在Application 的 onCreate 方法中調用 BlockDetectByPrinter.start() 便可。

咱們能夠簡單實現一個 LogMonitor 來記錄卡頓時候主線程的堆棧信息。當匹配到 >>>>> Dispatching 時,執行 startMonitor,會在 200ms(設定的卡頓閾值)後執行任務,這個任務負責在子線程(非UI線程)打印UI線程的堆棧信息。若是消息低於 200ms 內執行完成,就能夠匹配到 <<<<< Finished 日誌,那麼在打印堆棧任務啓動前執行 removeMonitor 取消了這個任務,則認爲沒有卡頓的發生;若是消息超過 200ms 才執行完畢,此時認爲發生了卡頓,並打印 UI 線程的堆棧信息。

LogMonitor如何實現?

public class LogMonitor {
    private static final String TAG = "LogMonitor";
    private static LogMonitor sInstance = new LogMonitor();
    private HandlerThread mLogThread = new HandlerThread("log");
    private Handler mIoHandler;
    private static final long TIME_BLOCK = 200L;

    private LogMonitor() {
        mLogThread.start();
        mIoHandler = new Handler(mLogThread.getLooper());
    }

    private static Runnable mLogRunnable = new Runnable() {
        @Override
        public void run() {
            StringBuilder sb = new StringBuilder();
            StackTraceElement[] stackTrace = Looper.getMainLooper().getThread().getStackTrace();
            for (StackTraceElement s : stackTrace) {
                sb.append(s.toString() + "\n");
            }
            Log.e(TAG, sb.toString());
        }
    };

    public static LogMonitor getInstance() {
        return sInstance;
    }

    public boolean isMonitor() {
        return mIoHandler.hasCallbacks(mLogRunnable);
    }

    public void startMonitor() {
        mIoHandler.postDelayed(mLogRunnable, TIME_BLOCK);
    }

    public void removeMonitor() {
        mIoHandler.removeCallbacks(mLogRunnable);
    }
}

這裏咱們使用 HandlerThread 來構造一個 Handler,HandlerThread 繼承自 Thread,實際上就一個 Thread,只不過比普通的 Thread 多了一個 Looper,對外提供本身這個 Looper 對象的 getLooper 方法,而後建立 Handler 時將 HandlerThread 中的 looper 對象傳入。這樣咱們的 mIoHandler 對象就是與 HandlerThread 這個非 UI 線程綁定的了,它處理耗時操做將不會阻塞UI。若是UI線程阻塞超過 200ms,就會在子線程中執行 mLogRunnable,打印出 UI 線程當前的堆棧信息,若是處理消息沒有超過 1000ms,則會實時的 remove 掉這個mLogRunnable 任務。

發生卡頓時打印出堆棧信息的大體內容以下,開發能夠經過 log 定位耗時的地方。

2020-10-30 14:26:13.823 30359-30415/com.example.myproxyplugin E/LogMonitor: java.lang.Thread.sleep(Native Method)
    java.lang.Thread.sleep(Thread.java:443)
    java.lang.Thread.sleep(Thread.java:359)
    com.example.myproxyplugin.MainActivity$1.run(MainActivity.java:22)
    android.os.Handler.handleCallback(Handler.java:900)
    android.os.Handler.dispatchMessage(Handler.java:103)
    android.os.Looper.loop(Looper.java:219)
    android.app.ActivityThread.main(ActivityThread.java:8347)
    java.lang.reflect.Method.invoke(Native Method)
    com.android.internal.os.RuntimeInit$MethodAndArgsCaller.run(RuntimeInit.java:513)
    com.android.internal.os.ZygoteInit.main(ZygoteInit.java:1055)

優勢:用戶使用 app 或者測試過程當中都能從app層面來監控卡頓狀況,一旦出現卡頓能記錄 app 狀態和信息, 只要dispatchMesaage執行耗時過大都會記錄下來,再也不有前面兩種adb方式面臨的問題與不足。

缺點:需另開子線程獲取堆棧信息,會消耗少許系統資源。

在實際實現中,不一樣手機不一樣 Android  系統甚至是不一樣的 ROM 版本,Loop 函數不必定都能打印出 」>>>>> Dispatching to 「 和 」<<<<< Finished to 「 這樣的日誌,致使該方式沒法進行。

優化的策略:咱們知道 Loop 函數開始和結束必會執行 println 打印日誌,因此優化版本將卡頓的判斷改成,Loop輸出第一句 log 時看成 startMonitor,輸出下一句log時看成end時刻來解決這個問題。

其實 Looper 中有個 Observer 接口能夠很好的完成這個任務,只是由於被標記爲 hide 了,因此咱們不能使用,不過能夠知道下。

Observer 接口提供了三個方法,分別是監放任務開始,結束,發生錯誤的回調。

    /** {@hide} */
    public interface Observer {
        /**
         * Called right before a message is dispatched.
         *
         * <p> The token type is not specified to allow the implementation to specify its own type.
         *
         * @return a token used for collecting telemetry when dispatching a single message.
         *         The token token must be passed back exactly once to either
         *         {@link Observer#messageDispatched} or {@link Observer#dispatchingThrewException}
         *         and must not be reused again.
         *
         */
        Object messageDispatchStarting();

        /**
         * Called when a message was processed by a Handler.
         *
         * @param token Token obtained by previously calling
         *              {@link Observer#messageDispatchStarting} on the same Observer instance.
         * @param msg The message that was dispatched.
         */
        void messageDispatched(Object token, Message msg);

        /**
         * Called when an exception was thrown while processing a message.
         *
         * @param token Token obtained by previously calling
         *              {@link Observer#messageDispatchStarting} on the same Observer instance.
         * @param msg The message that was dispatched and caused an exception.
         * @param exception The exception that was thrown.
         */
        void dispatchingThrewException(Object token, Message msg, Exception exception);
    }

利用Choreographer.FrameCallback監控卡頓

Choreographer.FrameCallback 官方文檔連接(https://developer.android.com/reference/android/view/Choreographer.FrameCallback.html)

咱們知道, Android 系統每隔 16ms 發出 VSYNC 信號,來通知界面進行重繪、渲染,每一次同步的週期爲16.6ms,表明一幀的刷新頻率。SDK 中包含了一個相關類,以及相關回調。理論上來講兩次回調的時間週期應該在 16ms,若是超過了 16ms 咱們則認爲發生了卡頓,利用兩次回調間的時間週期來判斷是否發生卡頓(這個方案是 Android 4.1 API 16 以上才支持)。

這個方案的原理主要是經過 Choreographer 類設置它的 FrameCallback 函數,當每一幀被渲染時會觸發回調 FrameCallback, FrameCallback 回調 void doFrame (long frameTimeNanos) 函數。一次界面渲染會回調 doFrame 方法,若是兩次 doFrame 之間的間隔大於 16.6ms 說明發生了卡頓。 

public class FPSFrameCallback implements Choreographer.FrameCallback {

    private static final String TAG = "FPS_TEST";
    private long mLastFrameTimeNanos = 0;
    private long mFrameIntervalNanos;

    public FPSFrameCallback(long lastFrameTimeNanos) {
        mLastFrameTimeNanos = lastFrameTimeNanos;
        // 1s 60 幀
        mFrameIntervalNanos = (long) (1000000000 / 60.0);
    }

    @Override
    public void doFrame(long frameTimeNanos) {

        //初始化時間
        if (mLastFrameTimeNanos == 0) {
            mLastFrameTimeNanos = frameTimeNanos;
        }
        final long jitterNanos = frameTimeNanos - mLastFrameTimeNanos;
        if (jitterNanos >= mFrameIntervalNanos) {
            final long skippedFrames = jitterNanos / mFrameIntervalNanos;
            if (skippedFrames > 30) {
                Log.i(TAG, "Skipped " + skippedFrames + " frames!  "
                        + "The application may be doing too much work on its main thread.");
            }
        }
        mLastFrameTimeNanos = frameTimeNanos;
        //註冊下一幀回調
        Choreographer.getInstance().postFrameCallback(this);
    }
}

本質和 log 沒太多區別,可是這個更加通用些,不會由於機型系統緣由出現不可用的問題。 

示例

下面進入實戰,看看代碼層面是如何實現的。 

MainActivity 代碼以下:

public class MainActivity extends AppCompatActivity {
    Handler handler = new Handler(Looper.getMainLooper());

    private final Runnable runnable = new Runnable() {
        @Override
        public void run() {
            try {
                Thread.sleep(600);
                handler.postDelayed(runnable, 500);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    };

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        Choreographer.getInstance().postFrameCallback(new FPSFrameCallback(System.nanoTime()));
        BlockDetectByPrinter.start();
    }

    @Override
    protected void onResume() {
        super.onResume();
        handler.postDelayed(runnable, 500);
    }

}

收集到的堆棧信息以下:

2020-10-30 14:26:13.823 30359-30415/com.example.myproxyplugin E/LogMonitor: java.lang.Thread.sleep(Native Method)
    java.lang.Thread.sleep(Thread.java:443)
    java.lang.Thread.sleep(Thread.java:359)
    com.example.myproxyplugin.MainActivity$1.run(MainActivity.java:22)
    android.os.Handler.handleCallback(Handler.java:900)
    android.os.Handler.dispatchMessage(Handler.java:103)
    android.os.Looper.loop(Looper.java:219)
    android.app.ActivityThread.main(ActivityThread.java:8347)
    java.lang.reflect.Method.invoke(Native Method)
    com.android.internal.os.RuntimeInit$MethodAndArgsCaller.run(RuntimeInit.java:513)
    com.android.internal.os.ZygoteInit.main(ZygoteInit.java:1055)

對於 FPS log 能夠看到以下信息:

     I/Choreographer: Skipped 64 frames!  The application may be doing too much work on its main thread.
     I/FPS_TEST: Skipped 65 frames!  The application may be doing too much work on its main thread.

若是你要把上面的方法用到本身的APP 中,那麼還須要不少操做,具體能夠閱讀參考文獻的內容。

 

參考文章

廣研Android卡頓監控系統

相關文章
相關標籤/搜索