JavaScript 數據結構與算法之美 - 桶排序、計數排序、基數排序

1. 前言

算法爲王。javascript

想學好前端,先練好內功,只有內功深厚者,前端之路纔會走得更遠html

筆者寫的 JavaScript 數據結構與算法之美 系列用的語言是 JavaScript ,旨在入門數據結構與算法和方便之後複習。前端

之因此把 計數排序、桶排序、基數排序 放在一塊兒比較,是由於它們的平均時間複雜度都爲 O(n)java

由於這三個排序算法的時間複雜度是線性的,因此咱們把這類排序算法叫做 線性排序(Linear sort)。git

之因此能作到線性的時間複雜度,主要緣由是,這三個算法不是基於比較的排序算法,都不涉及元素之間的比較操做。github

另外,請你們帶着問題來閱讀下文,問題:如何根據年齡給 100 萬用戶排序 ?算法

2. 桶排序(Bucket Sort)

桶排序是計數排序的升級版,也採用了分治思想數組

思想瀏覽器

  • 將要排序的數據分到有限數量的幾個有序的桶裏。
  • 每一個桶裏的數據再單獨進行排序(通常用插入排序或者快速排序)。
  • 桶內排完序以後,再把每一個桶裏的數據按照順序依次取出,組成的序列就是有序的了。

好比:數據結構

桶排序利用了函數的映射關係,高效與否的關鍵就在於這個映射函數的肯定。

爲了使桶排序更加高效,咱們須要作到這兩點:

  • 在額外空間充足的狀況下,儘可能增大桶的數量。
  • 使用的映射函數可以將輸入的 N 個數據均勻的分配到 K 個桶中。

桶排序的核心:就在於怎麼把元素平均分配到每一個桶裏,合理的分配將大大提升排序的效率。

實現

// 桶排序
const bucketSort = (array, bucketSize) => {
  if (array.length === 0) {
    return array;
  }

  console.time('桶排序耗時');
  let i = 0;
  let minValue = array[0];
  let maxValue = array[0];
  for (i = 1; i < array.length; i++) {
    if (array[i] < minValue) {
      minValue = array[i]; //輸入數據的最小值
    } else if (array[i] > maxValue) {
      maxValue = array[i]; //輸入數據的最大值
    }
  }

  //桶的初始化
  const DEFAULT_BUCKET_SIZE = 5; //設置桶的默認數量爲 5
  bucketSize = bucketSize || DEFAULT_BUCKET_SIZE;
  const bucketCount = Math.floor((maxValue - minValue) / bucketSize) + 1;
  const buckets = new Array(bucketCount);
  for (i = 0; i < buckets.length; i++) {
    buckets[i] = [];
  }

  //利用映射函數將數據分配到各個桶中
  for (i = 0; i < array.length; i++) {
    buckets[Math.floor((array[i] - minValue) / bucketSize)].push(array[i]);
  }

  array.length = 0;
  for (i = 0; i < buckets.length; i++) {
    quickSort(buckets[i]); //對每一個桶進行排序,這裏使用了快速排序
    for (var j = 0; j < buckets[i].length; j++) {
      array.push(buckets[i][j]);
    }
  }
  console.timeEnd('桶排序耗時');

  return array;
};

// 快速排序
const quickSort = (arr, left, right) => {
	let len = arr.length,
		partitionIndex;
	left = typeof left != 'number' ? 0 : left;
	right = typeof right != 'number' ? len - 1 : right;

	if (left < right) {
		partitionIndex = partition(arr, left, right);
		quickSort(arr, left, partitionIndex - 1);
		quickSort(arr, partitionIndex + 1, right);
	}
	return arr;
};

const partition = (arr, left, right) => {
	//分區操做
	let pivot = left, //設定基準值(pivot)
		index = pivot + 1;
	for (let i = index; i <= right; i++) {
		if (arr[i] < arr[pivot]) {
			swap(arr, i, index);
			index++;
		}
	}
	swap(arr, pivot, index - 1);
	return index - 1;
};

const swap = (arr, i, j) => {
	let temp = arr[i];
	arr[i] = arr[j];
	arr[j] = temp;
};
複製代碼

測試

const array = [4, 6, 8, 5, 9, 1, 2, 5, 3, 2];
console.log('原始array:', array);
const newArr = bucketSort(array);
console.log('newArr:', newArr);
// 原始 array:  [4, 6, 8, 5, 9, 1, 2, 5, 3, 2]
// 堆排序耗時: 0.133056640625ms
// newArr:   [1, 2, 2, 3, 4, 5, 5, 6, 8, 9]
複製代碼

分析

  • 第一,桶排序是原地排序算法嗎 ?

由於桶排序的空間複雜度,也即內存消耗爲 O(n),因此不是原地排序算法。

  • 第二,桶排序是穩定的排序算法嗎 ?

取決於每一個桶的排序方式,好比:快排就不穩定,歸併就穩定。

  • 第三,桶排序的時間複雜度是多少 ?

由於桶內部的排序能夠有多種方法,是會對桶排序的時間複雜度產生很重大的影響。因此,桶排序的時間複雜度能夠是多種狀況的。

總的來講 最佳狀況:當輸入的數據能夠均勻的分配到每個桶中。 最差狀況:當輸入的數據被分配到了同一個桶中。

如下是桶的內部排序快速排序的狀況:

若是要排序的數據有 n 個,咱們把它們均勻地劃分到 m 個桶內,每一個桶裏就有 k =n / m 個元素。每一個桶內部使用快速排序,時間複雜度爲 O(k * logk)。 m 個桶排序的時間複雜度就是 O(m * k * logk),由於 k = n / m,因此整個桶排序的時間複雜度就是 O(n*log(n/m))。 當桶的個數 m 接近數據個數 n 時,log(n/m) 就是一個很是小的常量,這個時候桶排序的時間複雜度接近 O(n)。

最佳狀況:T(n) = O(n)。當輸入的數據能夠均勻的分配到每個桶中。 最差狀況:T(n) = O(nlogn)。當輸入的數據被分配到了同一個桶中。 平均狀況:T(n) = O(n)。

桶排序最好狀況下使用線性時間 O(n),桶排序的時間複雜度,取決與對各個桶之間數據進行排序的時間複雜度,由於其它部分的時間複雜度都爲 O(n)。 很顯然,桶劃分的越小,各個桶之間的數據越少,排序所用的時間也會越少。但相應的空間消耗就會增大。

適用場景

  • 桶排序比較適合用在外部排序中。
  • 外部排序就是數據存儲在外部磁盤且數據量大,但內存有限,沒法將整個數據所有加載到內存中。

動畫

bocket-sort.gif

3. 計數排序(Counting Sort)

思想

  • 找出待排序的數組中最大和最小的元素。
  • 統計數組中每一個值爲 i 的元素出現的次數,存入新數組 countArr 的第 i 項。
  • 對全部的計數累加(從 countArr 中的第一個元素開始,每一項和前一項相加)。
  • 反向填充目標數組:將每一個元素 i 放在新數組的第 countArr[i] 項,每放一個元素就將 countArr[i] 減去 1 。

關鍵在於理解最後反向填充時的操做。

使用條件

  • 只能用在數據範圍不大的場景中,若數據範圍 k 比要排序的數據 n 大不少,就不適合用計數排序。
  • 計數排序只能給非負整數排序,其餘類型須要在不改變相對大小狀況下,轉換爲非負整數。
  • 好比若是考試成績精確到小數後一位,就須要將全部分數乘以 10,轉換爲整數。

實現

方法一:

const countingSort = array => {
	let len = array.length,
		result = [],
		countArr = [],
		min = (max = array[0]);
	console.time('計數排序耗時');
	for (let i = 0; i < len; i++) {
		// 獲取最小,最大 值
		min = min <= array[i] ? min : array[i];
		max = max >= array[i] ? max : array[i];
		countArr[array[i]] = countArr[array[i]] ? countArr[array[i]] + 1 : 1;
	}
	console.log('countArr :', countArr);
	// 從最小值 -> 最大值,將計數逐項相加
	for (let j = min; j < max; j++) {
		countArr[j + 1] = (countArr[j + 1] || 0) + (countArr[j] || 0);
	}
	console.log('countArr 2:', countArr);
	// countArr 中,下標爲 array 數值,數據爲 array 數值出現次數;反向填充數據進入 result 數據
	for (let k = len - 1; k >= 0; k--) {
		// result[位置] = array 數據
		result[countArr[array[k]] - 1] = array[k];
		// 減小 countArr 數組中保存的計數
		countArr[array[k]]--;
		// console.log("array[k]:", array[k], 'countArr[array[k]] :', countArr[array[k]],)
		console.log('result:', result);
	}
	console.timeEnd('計數排序耗時');
	return result;
};
複製代碼

測試

const array = [2, 2, 3, 8, 7, 1, 2, 2, 2, 7, 3, 9, 8, 2, 1, 4, 2, 4, 6, 9, 2];
console.log('原始 array: ', array);
const newArr = countingSort(array);
console.log('newArr: ', newArr);
// 原始 array:  [2, 2, 3, 8, 7, 1, 2, 2, 2, 7, 3, 9, 8, 2, 1, 4, 2, 4, 6, 9, 2]
// 計數排序耗時: 5.6708984375ms
// newArr:   [1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 6, 7, 7, 8, 8, 9, 9]
複製代碼

測試結果

方法二:

const countingSort2 = (arr, maxValue) => {
	console.time('計數排序耗時');
	maxValue = maxValue || arr.length;
	let bucket = new Array(maxValue + 1),
		sortedIndex = 0;
	(arrLen = arr.length), (bucketLen = maxValue + 1);

	for (let i = 0; i < arrLen; i++) {
		if (!bucket[arr[i]]) {
			bucket[arr[i]] = 0;
		}
		bucket[arr[i]]++;
	}

	for (let j = 0; j < bucketLen; j++) {
		while (bucket[j] > 0) {
			arr[sortedIndex++] = j;
			bucket[j]--;
		}
	}
	console.timeEnd('計數排序耗時');
	return arr;
};
複製代碼

測試

const array2 = [2, 2, 3, 8, 7, 1, 2, 2, 2, 7, 3, 9, 8, 2, 1, 4, 2, 4, 6, 9, 2];
console.log('原始 array2: ', array2);
const newArr2 = countingSort2(array2, 21);
console.log('newArr2: ', newArr2);
// 原始 array:  [2, 2, 3, 8, 7, 1, 2, 2, 2, 7, 3, 9, 8, 2, 1, 4, 2, 4, 6, 9, 2]
// 計數排序耗時: 0.043212890625ms
// newArr:   [1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 6, 7, 7, 8, 8, 9, 9]
複製代碼

例子

能夠認爲,計數排序實際上是桶排序的一種特殊狀況

當要排序的 n 個數據,所處的範圍並不大的時候,好比最大值是 k,咱們就能夠把數據劃分紅 k 個桶。每一個桶內的數據值都是相同的,省掉了桶內排序的時間。

咱們都經歷太高考,高考查分數系統你還記得嗎?咱們查分數的時候,系統會顯示咱們的成績以及所在省的排名。若是你所在的省有 50 萬考生,如何經過成績快速排序得出名次呢?

  • 考生的滿分是 900 分,最小是 0 分,這個數據的範圍很小,因此咱們能夠分紅 901 個桶,對應分數從 0 分到 900 分。
  • 根據考生的成績,咱們將這 50 萬考生劃分到這 901 個桶裏。桶內的數據都是分數相同的考生,因此並不須要再進行排序。
  • 咱們只須要依次掃描每一個桶,將桶內的考生依次輸出到一個數組中,就實現了 50 萬考生的排序。
  • 由於只涉及掃描遍歷操做,因此時間複雜度是 O(n)。

分析

  • 第一,計數排序是原地排序算法嗎 ? 由於計數排序的空間複雜度爲 O(k),k 是桶的個數,因此不是原地排序算法。
  • 第二,計數排序是穩定的排序算法嗎 ? 計數排序不改變相同元素之間本來相對的順序,所以它是穩定的排序算法。
  • 第三,計數排序的時間複雜度是多少 ? 最佳狀況:T(n) = O(n + k) 最差狀況:T(n) = O(n + k) 平均狀況:T(n) = O(k) k:桶的個數。

動畫

counting-sort.gif

4. 基數排序(Radix Sort)

思想

基數排序是一種非比較型整數排序算法,其原理是將整數按位數切割成不一樣的數字,而後按每一個位數分別比較。

因爲整數也能夠表達字符串(好比名字或日期)和特定格式的浮點數,因此基數排序也不是隻能使用於整數。

例子

假設咱們有 10 萬個手機號碼,但願將這 10 萬個手機號碼從小到大排序,你有什麼比較快速的排序方法呢 ?

這個問題裏有這樣的規律:假設要比較兩個手機號碼 a,b 的大小,若是在前面幾位中,a 手機號碼已經比 b 手機號碼大了,那後面的幾位就不用看了。因此是基於來比較的。

桶排序、計數排序能派上用場嗎 ?手機號碼有 11 位,範圍太大,顯然不適合用這兩種排序算法。針對這個排序問題,有沒有時間複雜度是 O(n) 的算法呢 ? 有,就是基數排序。

使用條件

  • 要求數據能夠分割獨立的來比較;
  • 位之間由遞進關係,若是 a 數據的高位比 b 數據大,那麼剩下的地位就不用比較了;
  • 每一位的數據範圍不能太大,要能夠用線性排序,不然基數排序的時間複雜度沒法作到 O(n)。

方案

按照優先從高位或低位來排序有兩種實現方案:

  • MSD:由高位爲基底,先按 k1 排序分組,同一組中記錄, 關鍵碼 k1 相等,再對各組按 k2 排序分紅子組, 以後,對後面的關鍵碼繼續這樣的排序分組,直到按最次位關鍵碼 kd 對各子組排序後,再將各組鏈接起來,便獲得一個有序序列。MSD 方式適用於位數多的序列。
  • LSD:由低位爲基底,先從 kd 開始排序,再對 kd - 1 進行排序,依次重複,直到對 k1 排序後便獲得一個有序序列。LSD 方式適用於位數少的序列。

實現

/** * name: 基數排序 * @param array 待排序數組 * @param max 最大位數 */
const radixSort = (array, max) => {
	console.time('計數排序耗時');
	const buckets = [];
	let unit = 10,
		base = 1;
	for (let i = 0; i < max; i++, base *= 10, unit *= 10) {
		for (let j = 0; j < array.length; j++) {
			let index = ~~((array[j] % unit) / base); //依次過濾出個位,十位等等數字
			if (buckets[index] == null) {
				buckets[index] = []; //初始化桶
			}
			buckets[index].push(array[j]); //往不一樣桶裏添加數據
		}
		let pos = 0,
			value;
		for (let j = 0, length = buckets.length; j < length; j++) {
			if (buckets[j] != null) {
				while ((value = buckets[j].shift()) != null) {
					array[pos++] = value; //將不一樣桶裏數據挨個撈出來,爲下一輪高位排序作準備,因爲靠近桶底的元素排名靠前,所以從桶底先撈
				}
			}
		}
	}
	console.timeEnd('計數排序耗時');
	return array;
};
複製代碼

測試

const array = [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48];
console.log('原始array:', array);
const newArr = radixSort(array, 2);
console.log('newArr:', newArr);
// 原始 array:  [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48]
// 堆排序耗時: 0.064208984375ms
// newArr:   [2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]
複製代碼

分析

  • 第一,基數排序是原地排序算法嗎 ? 由於計數排序的空間複雜度爲 O(n + k),因此不是原地排序算法。

  • 第二,基數排序是穩定的排序算法嗎 ? 基數排序不改變相同元素之間的相對順序,所以它是穩定的排序算法。

  • 第三,基數排序的時間複雜度是多少 ? 最佳狀況:T(n) = O(n * k) 最差狀況:T(n) = O(n * k) 平均狀況:T(n) = O(n * k) k 是待排序列最大值。

動畫

LSD 基數排序動圖演示:

radixSort.gif

5. 解答開篇

回過頭來看看開篇的思考題:如何根據年齡給 100 萬用戶排序 ?

你可能會說,我用上一節講的歸併、快排就能夠搞定啊!是的,它們也能夠完成功能,可是時間複雜度最低也是 O(nlogn)。

有沒有更快的排序方法呢 ?如下是參考答案。

  • 實際上,根據年齡給 100 萬用戶排序,就相似按照成績給 50 萬考生排序。
  • 咱們假設年齡的範圍最小 1 歲,最大不超過 120 歲。
  • 咱們能夠遍歷這 100 萬用戶,根據年齡將其劃分到這 120 個桶裏,而後依次順序遍歷這 120 個桶中的元素。
  • 這樣就獲得了按照年齡排序的 100 萬用戶數據。

6. 複雜性對比

基數排序 vs 計數排序 vs 桶排序

基數排序有兩種方法:

  • MSD 從高位開始進行排序
  • LSD 從低位開始進行排序

這三種排序算法都利用了桶的概念,但對桶的使用方法上有明顯差別:

  • 基數排序:根據鍵值的每位數字來分配桶;
  • 計數排序:每一個桶只存儲單一鍵值;
  • 桶排序:每一個桶存儲必定範圍的數值;

複雜性對比

名稱 平均 最好 最壞 空間 穩定性 排序方式
桶排序 O(n + k) O(n + k) O(n2) O(n + k) Yes Out-place
計數排序 O(n + k) O(n + k) O(n + k) O(k) Yes Out-place
基數排序 O(n * k) O(n * k) O(n * k) O(n + k) Yes Out-place

n: 數據規模

桶排序的時間複雜度能夠是多種狀況的,取決於桶內的排序。

7. 算法可視化工具

  • 算法可視化工具 algorithm-visualizer 算法可視化工具 algorithm-visualizer 是一個交互式的在線平臺,能夠從代碼中可視化算法,還能夠看到代碼執行的過程。 效果以下圖。

算法可視化工具

旨在經過交互式可視化的執行來揭示算法背後的機制。

insert-sort.gif

  • illustrated-algorithms 變量和操做的可視化表示加強了控制流和實際源代碼。您能夠快速前進和後退執行,以密切觀察算法的工做方式。

binary-search.gif

8. 系列文章

JavaScript 數據結構與算法之美 的系列文章。

標題 連接
時間和空間複雜度 github.com/biaochenxuy…
線性表(數組、鏈表、棧、隊列) github.com/biaochenxuy…
實現一個前端路由,如何實現瀏覽器的前進與後退 ? github.com/biaochenxuy…
棧內存與堆內存 、淺拷貝與深拷貝 github.com/biaochenxuy…
遞歸 github.com/biaochenxuy…
非線性表(樹、堆) github.com/biaochenxuy…
冒泡排序、選擇排序、插入排序 github.com/biaochenxuy…
歸併排序、快速排序、希爾排序、堆排序 github.com/biaochenxuy…
計數排序、桶排序、基數排序 github.com/biaochenxuy…
十大經典排序彙總 github.com/biaochenxuy…
強烈推薦 GitHub 上值得前端學習的數據結構與算法項目 github.com/biaochenxuy…

若是有錯誤或者不嚴謹的地方,請務必給予指正,十分感謝。

9. 最後

文中全部的代碼及測試事例都已經放到個人 GitHub 上了。

以爲有用 ?喜歡就收藏,順便點個贊吧,你的支持是我最大的鼓勵!

參考文章:

相關文章
相關標籤/搜索