TensorRT&Sample&Python[uff_custom_plugin]


本文是基於TensorRT 5.0.2基礎上,關於其內部的uff_custom_plugin例子的分析和介紹。
本例子展現如何使用cpp基於tensorrt python綁定和UFF解析器進行編寫plugin。該例子實現一個clip層(以CUDA kernel實現),而後封裝成一個tensorrt plugin,而後生成一個動態共享庫,用戶能夠動態的在python中連接該庫,將該plugin註冊到tensorrt的plugin registry中,並讓UFF解析器可以使用。
該例子仍是有些知識點未消化,後續接着研究研究。html

1 引言

假設當前路徑爲:node

TensorRT-5.0.2.6/samples

其對應當前例子文件目錄樹爲:python

# tree python

python
├── common.py
├── uff_custom_plugin
│   ├── CMakeLists.txt
│   ├── __init__.py
│   ├── lenet5.py
│   ├── mnist_uff_custom_plugin.py
│   ├── plugin
│   │   ├── clipKernel.cu
│   │   ├── clipKernel.h
│   │   ├── customClipPlugin.cpp
│   │   └── customClipPlugin.h
│   ├── README.md
│   └── requirements.txt

其中:linux

  • plugin包含Clip 層的plugin:api

    • clipKernel.cu 實現的cuda kernel;
    • clipKernel.h 導出cuda kernel爲cpp代碼;
    • customClipPlugin.cpp 實現clip tensorrt plugin,內部使用cuda kernel;
    • customClipPlugin.h CliPlugin的頭文件
  • lenet5.py 使用ReLU6激活函數去訓練MNIST;
  • mnist_uff_custom_plugin.py 將訓練好的模型轉換成UFF模型,並用tensorrt運行網絡

2 依賴

  • 建立build文件夾,而後進入該文件夾
mkdir build && pushd build
  • cmake生成對應Makefile,此處能夠自由設定一些參數。若是其中有些依賴不在默認位置路徑上,能夠cmake手動指定,關於Cmake的文檔,可參考
cmake ..  -DNVINFER_LIB=/TensorRT-5.0.2.6/lib/libnvinfer.so \
     -DTRT_LIB=/TensorRT-5.0.2.6/lib/ \
     -DCMAKE_CUDA_COMPILER=/usr/local/cuda/bin/nvcc \
     -DTRT_INCLUDE=/TensorRT-5.0.2.6/include

注意cmake打出的日誌中的VARIABLE_NAME-NOTFOUNDsession

  • 進行編譯
make -j32
  • 跳出build
popd

3 代碼解析

首先看看CMakeLists.txt。其中關於find_library, include_directories, add_subdirectory的能夠參考cmake-command文檔app

# cmake 3.8 已經將CUDA 做爲第一類語言了
cmake_minimum_required(VERSION 3.8 FATAL_ERROR)
project(ClipPlugin LANGUAGES CXX CUDA)

# 開啓全部編譯警告
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wno-long-long -pedantic -Werror")

# 設定一個宏set_ifndef,用於操做當變量未找到時的行爲:此處將未找到變量var 設定爲val
macro(set_ifndef var val)
    if (NOT ${var})
        set(${var} ${val})
    endif()
    message(STATUS "Configurable variable ${var} set to ${${var}}")
endmacro()

# -------- CONFIGURATION --------
set_ifndef(TRT_LIB /usr/lib/x86_64-linux-gnu)
set_ifndef(TRT_INCLUDE /usr/include/x86_64-linux-gnu)

# 尋找依賴:
message("\nThe following variables are derived from the values of the previous variables unless provided explicitly:\n")

# TensorRT's nvinfer lib
find_library(_NVINFER_LIB nvinfer HINTS ${TRT_LIB} PATH_SUFFIXES lib lib64)
set_ifndef(NVINFER_LIB ${_NVINFER_LIB})

# -------- BUILDING --------

# 將其餘include文件夾增長到編譯尋找路徑中
include_directories(${CUDA_INC_DIR} ${TRT_INCLUDE} ${CMAKE_SOURCE_DIR}/plugin/)

# 從對應源碼生成clipplugin library target
add_library(clipplugin MODULE
  ${CMAKE_SOURCE_DIR}/plugin/clipKernel.cu
  ${CMAKE_SOURCE_DIR}/plugin/customClipPlugin.cpp
  ${CMAKE_SOURCE_DIR}/plugin/clipKernel.h
  ${CMAKE_SOURCE_DIR}/plugin/customClipPlugin.h
)

target_compile_features(clipplugin PUBLIC cxx_std_11) # 指定使用C++11

# Link TensorRT's nvinfer lib
target_link_libraries(clipplugin PRIVATE ${NVINFER_LIB})

# We need to explicitly state that we need all CUDA files
# to be built with -dc as the member functions will be called by
# other libraries and executables (in our case, Python inference scripts)
set_target_properties(clipplugin PROPERTIES
  CUDA_SEPARABLE_COMPILATION ON
)

運行得:
less


下面咱們先看看lenet5.py

import tensorflow as tf
import numpy as np
import os


MODEL_DIR = os.path.join(
    os.path.dirname(os.path.realpath(__file__)),
    'models'
)


def load_data():
    # 導入mnist數據集
    # 手動下載aria2c -x 16 https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
    # 將mnist.npz移動到~/.keras/datasets/
    #  tf.keras.datasets.mnist.load_data會去讀取~/.keras/datasets/mnist.npz,而不從網絡下載
    mnist = tf.keras.datasets.mnist
    (x_train, y_train),(x_test, y_test) = mnist.load_data()
    x_train, x_test = x_train / 255.0, x_test / 255.0
    x_train = np.reshape(x_train, (-1, 1, 28, 28))
    x_test = np.reshape(x_test, (-1, 1, 28, 28))
    return x_train, y_train, x_test, y_test

def build_model():
    # 基於keras構建模型
    model = tf.keras.models.Sequential()
    model.add(tf.keras.layers.InputLayer(input_shape=[1, 28, 28], name="InputLayer"))
    model.add(tf.keras.layers.Flatten())
    model.add(tf.keras.layers.Dense(512))
    model.add(tf.keras.layers.Activation(activation=tf.nn.relu6, name="ReLU6"))
    model.add(tf.keras.layers.Dense(10, activation=tf.nn.softmax, name="OutputLayer"))
    return model

def train_model():

    ''' 1 - 構建和編譯模型 '''
    model = build_model()
    model.compile(optimizer='adam',
                  loss='sparse_categorical_crossentropy',
                  metrics=['accuracy'])

    ''' 2 - 裝載數據 '''
    x_train, y_train, x_test, y_test = load_data()

    ''' 3 - 模型訓練 '''
    model.fit(
        x_train, y_train,
        epochs = 10,
        verbose = 1
    )

    '''4 - 在測試樣本上驗證'''
    test_loss, test_acc = model.evaluate(x_test, y_test)
    print("Test loss: {}\nTest accuracy: {}".format(test_loss, test_acc))

    return model

def maybe_mkdir(dir_path):
    if not os.path.exists(dir_path):
        os.makedirs(dir_path)

def save_model(model):
    output_names = model.output.op.name
    sess = tf.keras.backend.get_session()

    graphdef = sess.graph.as_graph_def()
    frozen_graph = tf.graph_util.convert_variables_to_constants(sess, graphdef, [output_names])
    frozen_graph = tf.graph_util.remove_training_nodes(frozen_graph)

    # Make directory to save model in if it doesn't exist already
    maybe_mkdir(MODEL_DIR)

    model_path = os.path.join(MODEL_DIR, "trained_lenet5.pb")
    with open(model_path, "wb") as ofile:
        ofile.write(frozen_graph.SerializeToString())


if __name__ == "__main__":
    model = train_model()
    save_model(model)

上述可直接訓練獲得模型
dom


接着看clipKernel.h,

#ifndef CLIP_KERNEL_H
#define CLIP_KERNEL_H
#include "NvInfer.h"

//其就是提供一個函數聲明,以供後續調用
int clipInference(
    cudaStream_t stream,
    int n,
    float clipMin,
    float clipMax,
    const void* input,
    void* output);

#endif

對應的clipKernel.cu

include <clipKernel.h>

//以模板形式實現min,max等函數
template <typename T>
__device__ __forceinline__ const T& min(const T& a, const T& b)
{
    return (a > b) ? b : a;
}

template <typename T>
__device__ __forceinline__ const T& max(const T& a, const T& b)
{
    return (a > b) ? a : b;
}

//clipKernel函數的定義
template <typename T, unsigned nthdsPerCTA>
__launch_bounds__(nthdsPerCTA)
    __global__ void clipKernel(
        int n,
        const T clipMin,
        const T clipMax,
        const T* input,
        T* output)
{
    for (int i = blockIdx.x * nthdsPerCTA + threadIdx.x; i < n; i += gridDim.x * nthdsPerCTA)
    {
        output[i] = min<T>(max<T>(input[i], clipMin), clipMax);
    }
}


//創建gpu網格,調用上面的kernel
int clipInference(
    cudaStream_t stream,
    int n,
    float clipMin,
    float clipMax,
    const void* input,
    void* output)
{
    const int blockSize = 512;
    const int gridSize = (n + blockSize - 1) / blockSize;
    clipKernel<float, blockSize><<<gridSize, blockSize, 0, stream>>>(n, clipMin, clipMax,
                                                 static_cast<const float*>(input),
                                                 static_cast<float*>(output));
    return 0;
}

接着看customClipPlugin.h

#ifndef CUSTOM_CLIP_PLUGIN_H
#define CUSTOM_CLIP_PLUGIN_H

#include "NvInferPlugin.h"
#include <string>
#include <vector>


using namespace nvinfer1;

// One of the preferred ways of making TensorRT to be able to see
// our custom layer requires extending IPluginV2 and IPluginCreator classes.
// For requirements for overriden functions, check TensorRT API docs.

//建立ClipPlugin類
class ClipPlugin : public IPluginV2
{
public:
    ClipPlugin(const std::string name, float clipMin, float clipMax);

    ClipPlugin(const std::string name, const void* data, size_t length);

    // 無參構造函數無心義,因此這裏刪除默認構造函數.
    ClipPlugin() = delete;

    int getNbOutputs() const override;

    Dims getOutputDimensions(int index, const Dims* inputs, int nbInputDims) override;

    int initialize() override;

    void terminate() override;

    size_t getWorkspaceSize(int) const override { return 0; };

    int enqueue(int batchSize, const void* const* inputs, void** outputs, void* workspace, cudaStream_t stream) override;

    size_t getSerializationSize() const override;

    void serialize(void* buffer) const override;

    void configureWithFormat(const Dims* inputDims, int nbInputs, const Dims* outputDims, int nbOutputs, DataType type, PluginFormat format, int maxBatchSize) override;

    bool supportsFormat(DataType type, PluginFormat format) const override;

    const char* getPluginType() const override;

    const char* getPluginVersion() const override;

    void destroy() override;

    nvinfer1::IPluginV2* clone() const override;

    void setPluginNamespace(const char* pluginNamespace) override;

    const char* getPluginNamespace() const override;

private:
    const std::string mLayerName;
    float mClipMin, mClipMax;
    size_t mInputVolume;
    std::string mNamespace;
};

//定義ClipPluginCreator類
class ClipPluginCreator : public IPluginCreator
{
public:
    ClipPluginCreator();

    const char* getPluginName() const override;

    const char* getPluginVersion() const override;

    const PluginFieldCollection* getFieldNames() override;

    IPluginV2* createPlugin(const char* name, const PluginFieldCollection* fc) override;

    IPluginV2* deserializePlugin(const char* name, const void* serialData, size_t serialLength) override;
    
    void setPluginNamespace(const char* pluginNamespace) override;

    const char* getPluginNamespace() const override;

private:
    static PluginFieldCollection mFC;
    static std::vector<PluginField> mPluginAttributes;
    std::string mNamespace;
};

#endif

接着看customClipPlugin.cpp

#include "customClipPlugin.h"
#include "NvInfer.h"
#include "clipKernel.h"

#include <vector>
#include <cassert>
#include <cstring>

using namespace nvinfer1;

// Clip plugin specific constants
namespace {
    static const char* CLIP_PLUGIN_VERSION{"1"};
    static const char* CLIP_PLUGIN_NAME{"CustomClipPlugin"};
}

// Static class fields initialization
PluginFieldCollection ClipPluginCreator::mFC{};
std::vector<PluginField> ClipPluginCreator::mPluginAttributes;

REGISTER_TENSORRT_PLUGIN(ClipPluginCreator);

// 幫助函數,用於序列化plugin
template<typename T>
void writeToBuffer(char*& buffer, const T& val)
{
    *reinterpret_cast<T*>(buffer) = val;
    buffer += sizeof(T);
}

// 幫助函數,用於反序列化plugin
template<typename T>
T readFromBuffer(const char*& buffer)
{
    T val = *reinterpret_cast<const T*>(buffer);
    buffer += sizeof(T);
    return val;
}

/*開始實現ClipPlugin類中成員函數的定義*/
ClipPlugin::ClipPlugin(const std::string name, float clipMin, float clipMax)
    : mLayerName(name)
    , mClipMin(clipMin)
    , mClipMax(clipMax)
{
}

ClipPlugin::ClipPlugin(const std::string name, const void* data, size_t length)
    : mLayerName(name)
{
    // Deserialize in the same order as serialization
    const char *d = static_cast<const char *>(data);
    const char *a = d;

    mClipMin = readFromBuffer<float>(d);
    mClipMax = readFromBuffer<float>(d);

    assert(d == (a + length));
}

const char* ClipPlugin::getPluginType() const
{
    return CLIP_PLUGIN_NAME;
}

const char* ClipPlugin::getPluginVersion() const
{
    return CLIP_PLUGIN_VERSION;
}

int ClipPlugin::getNbOutputs() const
{
    return 1;
}

Dims ClipPlugin::getOutputDimensions(int index, const Dims* inputs, int nbInputDims)
{
    // Validate input arguments
    assert(nbInputDims == 1);
    assert(index == 0);

    // Clipping doesn't change input dimension, so output Dims will be the same as input Dims
    return *inputs;
}

int ClipPlugin::initialize()
{
    return 0;
}

int ClipPlugin::enqueue(int batchSize, const void* const* inputs, void** outputs, void*, cudaStream_t stream)
{
    int status = -1;

    // Our plugin outputs only one tensor
    void* output = outputs[0];

    // Launch CUDA kernel wrapper and save its return value
    status = clipInference(stream, mInputVolume * batchSize, mClipMin, mClipMax, inputs[0], output);

    return status;
}

size_t ClipPlugin::getSerializationSize() const
{
    return 2 * sizeof(float);
}

void ClipPlugin::serialize(void* buffer) const 
{
    char *d = static_cast<char *>(buffer);
    const char *a = d;

    writeToBuffer(d, mClipMin);
    writeToBuffer(d, mClipMax);

    assert(d == a + getSerializationSize());
}

void ClipPlugin::configureWithFormat(const Dims* inputs, int nbInputs, const Dims* outputs, int nbOutputs, DataType type, PluginFormat format, int)
{
    // Validate input arguments
    assert(nbOutputs == 1);
    assert(type == DataType::kFLOAT);
    assert(format == PluginFormat::kNCHW);

    // Fetch volume for future enqueue() operations
    size_t volume = 1;
    for (int i = 0; i < inputs->nbDims; i++) {
        volume *= inputs->d[i];
    }
    mInputVolume = volume;
}

bool ClipPlugin::supportsFormat(DataType type, PluginFormat format) const
{
    // This plugin only supports ordinary floats, and NCHW input format
    if (type == DataType::kFLOAT && format == PluginFormat::kNCHW)
        return true;
    else
        return false;
}

void ClipPlugin::terminate() {}

void ClipPlugin::destroy() {
    // This gets called when the network containing plugin is destroyed
    delete this;
}

IPluginV2* ClipPlugin::clone() const
{
    return new ClipPlugin(mLayerName, mClipMin, mClipMax);
}

void ClipPlugin::setPluginNamespace(const char* libNamespace) 
{
    mNamespace = libNamespace;
}

const char* ClipPlugin::getPluginNamespace() const
{
    return mNamespace.c_str();
}

/*開始實現ClipPluginCreator類中成員函數定義*/
ClipPluginCreator::ClipPluginCreator()
{
    // Describe ClipPlugin's required PluginField arguments
    mPluginAttributes.emplace_back(PluginField("clipMin", nullptr, PluginFieldType::kFLOAT32, 1));
    mPluginAttributes.emplace_back(PluginField("clipMax", nullptr, PluginFieldType::kFLOAT32, 1));

    // Fill PluginFieldCollection with PluginField arguments metadata
    mFC.nbFields = mPluginAttributes.size();
    mFC.fields = mPluginAttributes.data();
}

const char* ClipPluginCreator::getPluginName() const
{
    return CLIP_PLUGIN_NAME;
}

const char* ClipPluginCreator::getPluginVersion() const
{
    return CLIP_PLUGIN_VERSION;
}

const PluginFieldCollection* ClipPluginCreator::getFieldNames()
{
    return &mFC;
}

IPluginV2* ClipPluginCreator::createPlugin(const char* name, const PluginFieldCollection* fc)
{
    float clipMin, clipMax;
    const PluginField* fields = fc->fields;

    // Parse fields from PluginFieldCollection
    assert(fc->nbFields == 2);
    for (int i = 0; i < fc->nbFields; i++){
        if (strcmp(fields[i].name, "clipMin") == 0) {
            assert(fields[i].type == PluginFieldType::kFLOAT32);
            clipMin = *(static_cast<const float*>(fields[i].data));
        } else if (strcmp(fields[i].name, "clipMax") == 0) {
            assert(fields[i].type == PluginFieldType::kFLOAT32);
            clipMax = *(static_cast<const float*>(fields[i].data));
        }
    }
    return new ClipPlugin(name, clipMin, clipMax);
}

IPluginV2* ClipPluginCreator::deserializePlugin(const char* name, const void* serialData, size_t serialLength)
{
    // This object will be deleted when the network is destroyed, which will
    // call ClipPlugin::destroy()
    return new ClipPlugin(name, serialData, serialLength);
}

void ClipPluginCreator::setPluginNamespace(const char* libNamespace) 
{
    mNamespace = libNamespace;
}

const char* ClipPluginCreator::getPluginNamespace() const
{
    return mNamespace.c_str();
}

最後咱們看看mnist_uff_custom_plugin.py

import sys
import os
import ctypes
from random import randint

from PIL import Image
import numpy as np
import tensorflow as tf

import pycuda.driver as cuda
import pycuda.autoinit

import tensorrt as trt
import graphsurgeon as gs
import uff

# ../common.py
sys.path.insert(1,
    os.path.join(
        os.path.dirname(os.path.realpath(__file__)),
        os.pardir
    )
)
import common

# lenet5.py
import lenet5

MNIST_IMAGE_SIZE = 28
MNIST_CHANNELS = 1
MNIST_CLASSES = 10

# clipplugin動態連接庫的位置
CLIP_PLUGIN_LIBRARY = os.path.join(
    os.path.dirname(os.path.realpath(__file__)),
    'build/libclipplugin.so'
)

# 生成的模型的位置
MODEL_PATH = os.path.join(
    os.path.dirname(os.path.realpath(__file__)),
    'models/trained_lenet5.pb'
)


TRT_LOGGER = trt.Logger(trt.Logger.WARNING)


class ModelData(object):
    INPUT_NAME = "InputLayer"
    INPUT_SHAPE = (MNIST_CHANNELS, MNIST_IMAGE_SIZE, MNIST_IMAGE_SIZE)
    RELU6_NAME = "ReLU6"
    OUTPUT_NAME = "OutputLayer/Softmax"
    OUTPUT_SHAPE = (MNIST_IMAGE_SIZE, )
    DATA_TYPE = trt.float32


'''main中第二步,被model_to_uff調用 '''
# 將未支持的tf操做映射到tensorrt plugin
def prepare_namespace_plugin_map():
    # 本例子中,惟一未支持的就是tf.nn.relu6, 因此這裏建立一個新節點,告訴UffParser
    # tf.nn.relu6的位置和參數

    # The "clipMin" and "clipMax" fields of this TensorFlow node will be parsed by createPlugin,
    # and used to create a CustomClipPlugin with the appropriate parameters.
    trt_relu6 = gs.create_plugin_node(name="trt_relu6", op="CustomClipPlugin", clipMin=0.0, clipMax=6.0)
    namespace_plugin_map = {
        ModelData.RELU6_NAME: trt_relu6
    }
    return namespace_plugin_map


'''main中第二步:被model_to_uff調用 '''
# 從pb路徑中獲取uff路徑(e.g. /a/b/c/d.pb -> /a/b/c/d.uff)
def model_path_to_uff_path(model_path):
    uff_path = os.path.splitext(model_path)[0] + ".uff"
    return uff_path


'''main中第二步:被build_engine調用 '''
# 使用UFF轉換器將tf固化的graphdef轉換成UFF格式
def model_to_uff(model_path):
    # Transform graph using graphsurgeon to map unsupported TensorFlow
    # operations to appropriate TensorRT custom layer plugins
    dynamic_graph = gs.DynamicGraph(model_path)
    dynamic_graph.collapse_namespaces(prepare_namespace_plugin_map())
    # Save resulting graph to UFF file
    output_uff_path = model_path_to_uff_path(model_path)
    uff.from_tensorflow(
        dynamic_graph.as_graph_def(),
        [ModelData.OUTPUT_NAME],
        output_filename=output_uff_path,
        text=True
    )
    return output_uff_path


'''main中第二步:構建engine '''
def build_engine(model_path):
    with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.UffParser() as parser:
        builder.max_workspace_size = common.GiB(1)

        uff_path = model_to_uff(model_path)
        parser.register_input(ModelData.INPUT_NAME, ModelData.INPUT_SHAPE)
        parser.register_output(ModelData.OUTPUT_NAME)
        parser.parse(uff_path, network)

        return builder.build_cuda_engine(network)

'''main第四步:讀取測試樣本,並歸一化 '''
def load_normalized_test_case(pagelocked_buffer):
    _, _, x_test, y_test = lenet5.load_data()
    num_test = len(x_test)
    case_num = randint(0, num_test-1)
    img = x_test[case_num].ravel()
    np.copyto(pagelocked_buffer, img)
    return y_test[case_num]

def main():

    '''  1 - 裝載動態連接庫'''
    # By doing this, you will also register the Clip plugin with the TensorRT
    # PluginRegistry through use of the macro REGISTER_TENSORRT_PLUGIN present
    # in the plugin implementation. Refer to plugin/clipPlugin.cpp for more details.

    if not os.path.isfile(CLIP_PLUGIN_LIBRARY):
        raise IOError("\n{}\n{}\n{}\n".format(
            "Failed to load library ({}).".format(CLIP_PLUGIN_LIBRARY),
            "Please build the Clip sample plugin.",
            "For more information, see the included README.md"
        ))
    ctypes.CDLL(CLIP_PLUGIN_LIBRARY)

    ''' 2 - 判斷訓練好的模型是否存在'''
    if not os.path.isfile(MODEL_PATH):
        raise IOError("\n{}\n{}\n{}\n".format(
            "Failed to load model file ({}).".format(MODEL_PATH),
            "Please use 'python lenet5.py' to train and save the model.",
            "For more information, see the included README.md"
        ))

    ''' 3 - 用build_engine構建engine,而後檢索其中保存的模型mean值'''
    with build_engine(MODEL_PATH) as engine:

        ''' 4 - 分配buffers, 建立一個流'''
        inputs, outputs, bindings, stream = common.allocate_buffers(engine)

        with engine.create_execution_context() as context:

            print("\n=== Testing ===")
            
            ''' 5 - 讀取測試樣本,並歸一化'''
            test_case = load_normalized_test_case(inputs[0].host)
            print("Loading Test Case: " + str(test_case))

            ''' 6 -執行inference,do_inference函數會返回一個list類型,此處只有一個元素 '''
            [pred] = common.do_inference(context, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream)
            print("Prediction: " + str(np.argmax(pred)))


if __name__ == "__main__":
    main()

運行結果爲:

相關文章
相關標籤/搜索
本站公眾號
   歡迎關注本站公眾號,獲取更多信息