在通過了ODS層的加載數據、DWD層的解析數據後。這一節將具體分析特定指標,DWS層將對DWD層數據輕度彙總,ADS層將統計數據。網絡
DWD層目標:統計當日、當週、當月活動的每一個設備明細。app
每日活躍設備明細oop
hive (gmall)> drop table if exists dws_uv_detail_day; create external table dws_uv_detail_day( `mid_id` string COMMENT '設備惟一標識', `user_id` string COMMENT '用戶標識', `version_code` string COMMENT '程序版本號', `version_name` string COMMENT '程序版本名', `lang` string COMMENT '系統語言', `source` string COMMENT '渠道號', `os` string COMMENT '安卓系統版本', `area` string COMMENT '區域', `model` string COMMENT '手機型號', `brand` string COMMENT '手機品牌', `sdk_version` string COMMENT 'sdkVersion', `gmail` string COMMENT 'gmail', `height_width` string COMMENT '屏幕寬高', `app_time` string COMMENT '客戶端日誌產生時的時間', `network` string COMMENT '網絡模式', `lng` string COMMENT '經度', `lat` string COMMENT '緯度' ) partitioned by(dt string) stored as parquet location '/warehouse/gmall/dws/dws_uv_detail_day' ;
hive (gmall)> set hive.exec.dynamic.partition.mode=nonstrict; insert overwrite table dws_uv_detail_day partition(dt='2020-02-03') select mid_id, concat_ws('|', collect_set(user_id)) user_id, concat_ws('|', collect_set(version_code)) version_code, concat_ws('|', collect_set(version_name)) version_name, concat_ws('|', collect_set(lang))lang, concat_ws('|', collect_set(source)) source, concat_ws('|', collect_set(os)) os, concat_ws('|', collect_set(area)) area, concat_ws('|', collect_set(model)) model, concat_ws('|', collect_set(brand)) brand, concat_ws('|', collect_set(sdk_version)) sdk_version, concat_ws('|', collect_set(gmail)) gmail, concat_ws('|', collect_set(height_width)) height_width, concat_ws('|', collect_set(app_time)) app_time, concat_ws('|', collect_set(network)) network, concat_ws('|', collect_set(lng)) lng, concat_ws('|', collect_set(lat)) lat from dwd_start_log where dt='2020-02-03' group by mid_id;
hive (gmall)> select * from dws_uv_detail_day limit 1;
每週活躍設備明細日誌
hive (gmall)> drop table if exists dws_uv_detail_wk; create external table dws_uv_detail_wk( `mid_id` string COMMENT '設備惟一標識', `user_id` string COMMENT '用戶標識', `version_code` string COMMENT '程序版本號', `version_name` string COMMENT '程序版本名', `lang` string COMMENT '系統語言', `source` string COMMENT '渠道號', `os` string COMMENT '安卓系統版本', `area` string COMMENT '區域', `model` string COMMENT '手機型號', `brand` string COMMENT '手機品牌', `sdk_version` string COMMENT 'sdkVersion', `gmail` string COMMENT 'gmail', `height_width` string COMMENT '屏幕寬高', `app_time` string COMMENT '客戶端日誌產生時的時間', `network` string COMMENT '網絡模式', `lng` string COMMENT '經度', `lat` string COMMENT '緯度', `monday_date` string COMMENT '週一日期', `sunday_date` string COMMENT '週日日期' ) COMMENT '活躍用戶按周明細' PARTITIONED BY (`wk_dt` string) stored as parquet location '/warehouse/gmall/dws/dws_uv_detail_wk/';
set hive.exec.dynamic.partition.mode=nonstrict; insert overwrite table dws_uv_detail_wk partition(wk_dt) select mid_id, concat_ws('|', collect_set(user_id)) user_id, concat_ws('|', collect_set(version_code)) version_code, concat_ws('|', collect_set(version_name)) version_name, concat_ws('|', collect_set(lang))lang, concat_ws('|', collect_set(source)) source, concat_ws('|', collect_set(os)) os, concat_ws('|', collect_set(area)) area, concat_ws('|', collect_set(model)) model, concat_ws('|', collect_set(brand)) brand, concat_ws('|', collect_set(sdk_version)) sdk_version, concat_ws('|', collect_set(gmail)) gmail, concat_ws('|', collect_set(height_width)) height_width, concat_ws('|', collect_set(app_time)) app_time, concat_ws('|', collect_set(network)) network, concat_ws('|', collect_set(lng)) lng, concat_ws('|', collect_set(lat)) lat, date_add(next_day('2020-02-03','mo'),-7), date_add(next_day('2020-02-03','mo'),-1), concat(date_add(next_day('2020-02-03','mo'),-7),'_',date_add(next_day('2020-02-03','mo'),-1)) from dws_uv_detail_day where dt>=date_add(next_day('2020-02-03','mo'),-7) and dt<=date_add(next_day('2020-02-03','mo'),-1) group by mid_id;
select * from dws_uv_detail_wk limit 1;
每個月活躍設備明細code
hive (gmall)> drop table if exists dws_uv_detail_mn; create external table dws_uv_detail_mn( `mid_id` string COMMENT '設備惟一標識', `user_id` string COMMENT '用戶標識', `version_code` string COMMENT '程序版本號', `version_name` string COMMENT '程序版本名', `lang` string COMMENT '系統語言', `source` string COMMENT '渠道號', `os` string COMMENT '安卓系統版本', `area` string COMMENT '區域', `model` string COMMENT '手機型號', `brand` string COMMENT '手機品牌', `sdk_version` string COMMENT 'sdkVersion', `gmail` string COMMENT 'gmail', `height_width` string COMMENT '屏幕寬高', `app_time` string COMMENT '客戶端日誌產生時的時間', `network` string COMMENT '網絡模式', `lng` string COMMENT '經度', `lat` string COMMENT '緯度' ) COMMENT '活躍用戶按月明細' PARTITIONED BY (`mn` string) stored as parquet location '/warehouse/gmall/dws/dws_uv_detail_mn/';
insert overwrite table dws_uv_detail_mn partition(mn) select mid_id, concat_ws('|', collect_set(user_id)) user_id, concat_ws('|', collect_set(version_code)) version_code, concat_ws('|', collect_set(version_name)) version_name, concat_ws('|', collect_set(lang)) lang, concat_ws('|', collect_set(source)) source, concat_ws('|', collect_set(os)) os, concat_ws('|', collect_set(area)) area, concat_ws('|', collect_set(model)) model, concat_ws('|', collect_set(brand)) brand, concat_ws('|', collect_set(sdk_version)) sdk_version, concat_ws('|', collect_set(gmail)) gmail, concat_ws('|', collect_set(height_width)) height_width, concat_ws('|', collect_set(app_time)) app_time, concat_ws('|', collect_set(network)) network, concat_ws('|', collect_set(lng)) lng, concat_ws('|', collect_set(lat)) lat, date_format('2020-02-03', 'yyyy-MM') from dws_uv_detail_day where date_format(dt, 'yyyy-MM')=date_format('2020-02-03', 'yyyy-MM') group by mid_id;
hive (gmall)> select * from dws_uv_detail_mn limit 2;
ADS層目標:計算當日、當週、當月活躍設備數orm
hive (gmall)> drop table if exists ads_uv_count; create external table ads_uv_count( `dt` string COMMENT '統計日期', `day_count` bigint COMMENT '當日用戶數量', `wk_count` bigint COMMENT '當週用戶數量', `mn_count` bigint COMMENT '當月用戶數量', `is_weekend` string COMMENT 'Y,N是不是週末,用於獲得本週最終結果', `is_monthend` string COMMENT 'Y,N是不是月末,用於獲得本月最終結果' ) COMMENT '活躍設備數' row format delimited fields terminated by '\t' location '/warehouse/gmall/ads/ads_uv_count/';
hive (gmall)> insert into table ads_uv_count select '2020-02-03', daycount.ct, weekcount.ct, mncount.ct, if(date_add(next_day('2020-02-03','mo'),-1)='2020-02-03', 'Y', 'N'), if(last_day('2020-02-03')='2020-02-03','Y','N') from ( select '2020-02-03' dt, count(*) ct from dws_uv_detail_day where dt='2020-02-03' )daycount join ( select '2020-02-03' dt, count(*) ct from dws_uv_detail_wk where wk_dt=concat(date_add(next_day('2020-02-03','mo'),-7),'_',date_add(next_day('2020-02-03','mo'),-1)) )weekcount on daycount.dt=weekcount.dt join ( select '2020-02-03' dt, count(*) ct from dws_uv_detail_mn where mn=date_format('2020-02-10','yyyy-MM') )mncount on daycount.dt=mncount.dt;
[hadoop@hadoop151 bin]$ ads_uv_log.sh 2020-01-01 2020-01-31
查詢ADS層中的數據。hadoop
hive (gmall)> select * from ads_uv_count; OK ads_uv_count.dt ads_uv_count.day_count ads_uv_count.wk_count ads_uv_count.mn_count ads_uv_count.is_weekend ads_uv_count.is_monthend 2020-02-03 741 741 741 N N 2020-01-01 521 990 1000 N N 2020-01-10 728 999 1000 N N 2020-01-11 763 999 1000 N N 2020-01-12 742 999 1000 Y N 2020-01-13 444 1000 1000 N N 2020-01-14 757 1000 1000 N N 2020-01-15 757 1000 1000 N N 2020-01-16 756 1000 1000 N N 2020-01-17 744 1000 1000 N N 2020-01-18 746 1000 1000 N N 2020-01-19 722 1000 1000 Y N 2020-01-02 506 990 1000 N N 2020-01-20 751 1000 1000 N N 2020-01-21 742 1000 1000 N N 2020-01-22 760 1000 1000 N N 2020-01-23 750 1000 1000 N N 2020-01-24 784 1000 1000 N N 2020-01-25 578 1000 1000 N N 2020-01-26 866 1000 1000 Y N 2020-01-27 750 999 1000 N N 2020-01-28 757 999 1000 N N 2020-01-29 745 999 1000 N N 2020-01-03 736 990 1000 N N 2020-01-30 766 999 1000 N N 2020-01-31 657 999 1000 N Y 2020-01-04 502 990 1000 N N 2020-01-05 759 990 1000 Y N 2020-01-06 762 999 1000 N N 2020-01-07 772 999 1000 N N 2020-01-08 735 999 1000 N N 2020-01-09 29 999 1000 N N Time taken: 0.042 seconds, Fetched: 32 row(s)
形成周活躍設備接近月活躍設備的緣由多是生成的埋點數據致使的,由於沒有生產數據,因此這樣的結果應該在乎料之中。string