1、概述
HPA全稱Horizontal Pod Autoscaling,即pod的水平自動擴展。HPA的操做對象是RC、RS或Deployment對應的Pod,根據觀察到的CPU實際使用量與用戶的指望值進行比對,作出是否須要增減實例數量的決策。
它根據Pod當前系統的負載來自動水平擴容,若是系統負載超過預約值,就開始增長Pod的個數,若是低於某個值,就自動減小Pod的個數。目前K8S的HPA只能根據CPU和內存去度量系統的負載,並且目前還依賴heapster去收集CPU的使用狀況。
HPA經過按期(按期輪詢的時間經過–horizontal-pod-autoscaler-sync-period選項來設置,默認的時間爲30秒)經過Status.PodSelector來查詢pods的狀態,得到pod的CPU使用率。而後,經過現有pods的CPU使用率的平均值(計算方式是最近的pod使用量除以設定的每一個Pod的CPU使用率限額,例最近一分鐘從heapster中得到的平均值除以Pod的CPU limits值)跟目標使用率進行比較,而且在擴容時,還要遵循預先設定的副本數限制:MinReplicas <= Replicas <= MaxReplicas。
計算擴容後Pod的個數:sum(最近一分鐘內某個Pod的CPU使用率/量的平均值)/CPU使用上限的整數+1
考慮到自動擴展的決策可能須要一段時間纔會生效,甚至在短期內會引入一些噪聲。例如當pod所須要的CPU負荷過大,從而運行一個新的pod進行分流,在建立過程當中,系統的CPU使用量可能會有一個攀升的過程。因此,在每一次做出決策後的一段時間內,將再也不進行擴展決策。對於ScaleUp而言,這個時間段爲3分鐘,Scaledown爲5分鐘。
HPA容許必定範圍內的CPU使用量的不穩定,只有avg(CurrentPodsConsumption) / Target小於90%或者大於110%時纔會觸發擴容或縮容,避免頻繁擴容、縮容形成顛簸。
爲了簡便,選用了相對比率(90%的CPU資源)而不是0.6個CPU core來描述擴容、縮容條件。若是選擇使用絕對度量,用戶須要保證目標(限額)要比請求使用的低,不然,過載的Pod未必可以消耗那麼多,從而自動擴容永遠不會被觸發:假設設置CPU爲1個核,那麼這個pod只能使用1個核,可能Pod在過載的狀況下也不能徹底利用這個核,因此擴容不會發生。在修改申請資源時,還有同時調整擴容的條件,好比將1個core變爲1.2core,那麼擴容條件應該同步改成1.2core,真是太麻煩了,與自動擴容的目標相悖。
例1:html
[root@docker79 ~]# kubectl get pods No resources found. [root@docker79 ~]# kubectl run myapp --image=ikubernetes/myapp:v1 --replicas=1 --requests='cpu=50m,memory=256Mi' --limits='cpu=50m,memory=256Mi' --labels='app=myapp' --expose --port=80 service/myapp created deployment.apps/myapp created [root@docker79 ~]# kubectl get pods NAME READY STATUS RESTARTS AGE myapp-6985749785-l4c87 1/1 Running 0 15s [root@docker79 ~]# kubectl get svc NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 20d myapp ClusterIP 10.100.44.181 <none> 80/TCP 20s [root@docker79 ~]# kubectl autoscale deployment myapp --min=1 --max=4 --cpu-percent=40 horizontalpodautoscaler.autoscaling/myapp autoscaled [root@docker79 ~]# kubectl get hpa NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE myapp Deployment/myapp <unknown>/40% 1 4 0 6s [root@docker79 ~]# [root@docker79 ~]# kubectl patch svc myapp -p '{"spec":{"type":"NodePort"}}' service/myapp patched [root@docker79 ~]# kubectl get svc NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 20d myapp NodePort 10.100.44.181 <none> 80:30193/TCP 4m [root@docker79 ~]# [root@docker79 ~]# kubectl get hpa NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE myapp Deployment/myapp 0%/40% 1 4 1 6m [root@docker79 ~]#
以上建立hap,並定義了CPU使用率達到40%時進行擴展,下面開啓 ab壓測,而後使其自動擴展docker
[root@docker79 ~]# ab -c 100 -n 50000 http://docker78:30193/index.html This is ApacheBench, Version 2.3 <$Revision: 1430300 $> Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/ Licensed to The Apache Software Foundation, http://www.apache.org/ Benchmarking docker78 (be patient) Completed 5000 requests Completed 10000 requests Completed 15000 requests Completed 20000 requests ...... [root@docker79 ~]# kubectl describe hpa Name: myapp Namespace: default Labels: <none> Annotations: <none> CreationTimestamp: Mon, 17 Sep 2018 16:40:26 +0800 Reference: Deployment/myapp Metrics: ( current / target ) resource cpu on pods (as a percentage of request): 102% (51m) / 40% Min replicas: 1 Max replicas: 4 Deployment pods: 1 current / 3 desired Conditions: Type Status Reason Message ---- ------ ------ ------- AbleToScale True SucceededRescale the HPA controller was able to update the target scale to 3 ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica count from cpu resource utilization (percentage of request) ScalingLimited False DesiredWithinRange the desired count is within the acceptable range Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal SuccessfulRescale 14s horizontal-pod-autoscaler New size: 3; reason: cpu resource utilization (percentage of request) above target [root@docker79 ~]# [root@docker79 ~]# kubectl get pods NAME READY STATUS RESTARTS AGE myapp-6985749785-fvxbz 1/1 Running 0 1m myapp-6985749785-l4c87 1/1 Running 0 14m myapp-6985749785-xdmnw 1/1 Running 0 1m [root@docker79 ~]#
例2,接上以manifests yaml的格式定義HorizontalPodAutoscaler ,並同時定義CPU、Memory資源的閥值,以便pod擴展:shell
[root@docker79 ~]# cd manifests/ [root@docker79 manifests]# mkdir hpa [root@docker79 manifests]# cd hpa [root@docker79 hpa]# vim hpa-demo-v2.yaml [root@docker79 hpa]# cat hpa-demo-v2.yaml apiVersion: autoscaling/v2beta1 kind: HorizontalPodAutoscaler metadata: name: myapp-hpa-v2 spec: scaleTargetRef: apiVersion: apps/v1 kind: Deployment name: myapp minReplicas: 1 maxReplicas: 5 metrics: - type: Resource resource: name: cpu targetAverageUtilization: 55 - type: Resource resource: name: memory targetAverageValue: 50Mi [root@docker79 hpa]# [root@docker79 hpa]# kubectl delete hpa myapp horizontalpodautoscaler.autoscaling "myapp" deleted [root@docker79 hpa]# [root@docker79 hpa]# kubectl apply -f hpa-demo-v2.yaml horizontalpodautoscaler.autoscaling/myapp-hpa-v2 created [root@docker79 hpa]# kubectl get hpa NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE myapp-hpa-v2 Deployment/myapp <unknown>/50Mi, <unknown>/55% 1 5 0 6s [root@docker79 hpa]#
再次開啓壓測apache
[root@docker79 ~]# ab -c 100 -n 30000 http://docker77:30193/index.html This is ApacheBench, Version 2.3 <$Revision: 1430300 $> Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/ Licensed to The Apache Software Foundation, http://www.apache.org/ Benchmarking docker77 (be patient) Completed 3000 requests Completed 6000 requests ...... [root@docker79 hpa]# kubectl describe hpa Name: myapp-hpa-v2 Namespace: default Labels: <none> Annotations: kubectl.kubernetes.io/last-applied-configuration={"apiVersion":"autoscaling/v2beta1","kind":"HorizontalPodAutoscaler","metadata":{"annotations":{},"name":"myapp-hpa-v2","namespace":"default"},"spec":{... CreationTimestamp: Mon, 17 Sep 2018 17:30:53 +0800 Reference: Deployment/myapp Metrics: ( current / target ) resource memory on pods: 3442688 / 50Mi resource cpu on pods (as a percentage of request): 68% (34m) / 55% Min replicas: 1 Max replicas: 5 Deployment pods: 2 current / 3 desired Conditions: Type Status Reason Message ---- ------ ------ ------- AbleToScale True SucceededRescale the HPA controller was able to update the target scale to 3 ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica count from cpu resource utilization (percentage of request) ScalingLimited False DesiredWithinRange the desired count is within the acceptable range Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal SuccessfulRescale 5m horizontal-pod-autoscaler New size: 2; reason: cpu resource utilization (percentage of request) above target Normal SuccessfulRescale 9s horizontal-pod-autoscaler New size: 3; reason: cpu resource utilization (percentage of request) above target [root@docker79 hpa]#
仔細觀察hpa 的信息,發現已經擴展了兩個new pods。
例3:
pods 能夠自定義一些資源指標,並將其輸出成Restful風格的API,並支持讓prometheus 讀取、認識這些自定義的指標值 ,而後hpa 就能夠根據這些指標值 進行擴展或收縮。以下所示:vim
[root@docker79 hpa]# cat hpa-demo-custom.yaml apiVersion: autoscaling/v2beta1 kind: HorizontalPodAutoscaler metadata: name: myapp-hpa-v2 spec: scaleTargetRef: apiVersion: apps/v1 kind: Deployment name: myapp minReplicas: 1 maxReplicas: 5 metrics: - type: Pods pods: metricName: http_requests targetAverageValue: 800m [root@docker79 hpa]#
因爲hpa 我使用還不是特別熟練,因此簡單總結這麼多,後續慢慢補充。你們勿噴。 api