以前咱們已經瞭解了操做系統中進程的概念,程序並不能單獨運行,只有將程序裝載到內存中,系統爲它分配資源才能運行,而這種執行的程序就稱之爲進程。程序和進程的區別就在於:程序是指令的集合,它是進程運行的靜態描述文本;進程是程序的一次執行活動,屬於動態概念。在多道編程中,咱們容許多個程序同時加載到內存中,在操做系統的調度下,能夠實現併發地執行。這是這樣的設計,大大提升了CPU的利用率。進程的出現讓每一個用戶感受到本身獨享CPU,所以,進程就是爲了在CPU上實現多道編程而提出的。html
IPC(Inter-Process Communication)python
隊列是先進先出git
必須put放進東西后 才能get來取值github
建立共享的進程隊列,Queue是多進程安全的隊列,可使用Queue實現多進程之間的數據傳遞。 數據庫
Queue([maxsize])
建立共享的進程隊列。
參數 :maxsize是隊列中容許的最大項數。若是省略此參數,則無大小限制。
底層隊列使用管道和鎖定實現。
Queue([maxsize])
建立共享的進程隊列。maxsize是隊列中容許的最大項數。若是省略此參數,則無大小限制。底層隊列使用管道和鎖定實現。另外,還須要運行支持線程以便隊列中的數據傳輸到底層管道中。
Queue的實例q具備如下方法:
q.get( [ block [ ,timeout ] ] )
返回q中的一個項目。若是q爲空,此方法將阻塞,直到隊列中有項目可用爲止。block用於控制阻塞行爲,默認爲True. 若是設置爲False,將引起Queue.Empty異常(定義在Queue模塊中)。timeout是可選超時時間,用在阻塞模式中。若是在制定的時間間隔內沒有項目變爲可用,將引起Queue.Empty異常。
q.get_nowait( )
同q.get(False)方法。
q.put(item [, block [,timeout ] ] )
將item放入隊列。若是隊列已滿,此方法將阻塞至有空間可用爲止。block控制阻塞行爲,默認爲True。若是設置爲False,將引起Queue.Empty異常(定義在Queue庫模塊中)。timeout指定在阻塞模式中等待可用空間的時間長短。超時後將引起Queue.Full異常。
q.qsize()
返回隊列中目前項目的正確數量。此函數的結果並不可靠,由於在返回結果和在稍後程序中使用結果之間,隊列中可能添加或刪除了項目。在某些系統上,此方法可能引起NotImplementedError異常。
q.empty()
若是調用此方法時 q爲空,返回True。若是其餘進程或線程正在往隊列中添加項目,結果是不可靠的。也就是說,在返回和使用結果之間,隊列中可能已經加入新的項目。
q.full()
若是q已滿,返回爲True. 因爲線程的存在,結果也多是不可靠的(參考q.empty()方法)。。
隊列中的進程的內容是共享的 由於不一樣的進程的數據是隔離的 咱們能夠用隊列 讓他們之間的數據進行共享編程
在進程中使用隊列能夠完成雙向通訊json
from multiprocessing import Process ,Queue q = Queue(10) try: q.get_nowwait() # 若是你用 nowwait的話你的獲取嗯u過沒有就不會阻塞就會報錯 except: print('queue.Empty') q.get() for i in range(10): q.get(i) print(q.qsize(10))
from multiprocessing import Process ,Queue q = Queue(10) # 建立一個能夠存放10個值的隊列 # try: # q.get_nowwait() # except: # print('queue.Empty') # # q.get() for i in range(10): q.put(i) print(q.qsize()) # 獲取你的隊列能夠存放的最大值 print(q.full()) # 斷定是否是滿了 返回的值布爾值 # q.put(111) # 給這個隊列放進值 # print(q.grt()) print('*'*10) print(q.empty()) # 斷定隊列是否是爲空 返回的也是布爾值
生產者消費者模型
解決數據供需不平衡的狀況
隊列是進程安全的 內置了鎖來保證隊列中的每個數據都不會被多個進程重複取
import time import random from multiprocessing import Process,Queue 生產者消費者模型 解決數據供需不平衡的狀況 隊列是進程安全的 內置了鎖來保證隊列中的每個數據都不會被多個進程重複取 def consumer(q,name): while True: food = q.get() if food == 'done':break time.sleep(random.random()) print('%s吃了%s'%(name,food)) def producer(q,name,food): for i in range(10): time.sleep(random.random()) print('%s生產了%s%s'%(name,food,i)) q.put('%s%s'%(food,i)) if __name__ == '__main__': q = Queue() p1 = Process(target=producer,args=[q,'Egon','泔水']) p2 = Process(target=producer,args=[q,'Yuan','骨頭魚刺']) p1.start() p2.start() Process(target=consumer,args=[q,'alex']).start() Process(target=consumer,args=[q,'wusir']).start() p1.join() p2.join() q.put('done') q.put('done')
import time import random from multiprocessing import Process,JoinableQueue def consumer(q,name): while True: food = q.get() time.sleep(random.random()) print('%s吃了%s'%(name,food)) q.task_done() def producer(q,name,food): for i in range(10): time.sleep(random.random()) print('%s生產了%s%s'%(name,food,i)) q.put('%s%s'%(food,i)) q.join() # 等到全部的數據都被taskdone才結束 if __name__ == '__main__': q = JoinableQueue() p1 = Process(target=producer,args=[q,'Egon','泔水']) p2 = Process(target=producer,args=[q,'Yuan','骨頭魚刺']) p1.start() p2.start() c1 = Process(target=consumer,args=[q,'alex']) c2 = Process(target=consumer,args=[q,'wusir']) c1.daemon = True c2.daemon = True c1.start() c2.start() p1.join() p2.join() # producer # put # 生產徹底部的數據就沒有其餘工做了 # 在生產數據方 : 容許執行q.join # join會發起一個阻塞,直到全部當前隊列中的數據都被消費 # consumer # get 獲取到數據 # 處理數據 # q.task_done() 告訴q,剛剛從q獲取的數據已經處理完了 # consumer每完成一個任務就會給q發送一個taskdone # producer在全部的數據都生產完以後會執行q.join() # producer會等待consumer消費完數據才結束 # 主進程中對producer進程進行join # 主進程中的代碼會等待producer執行完才結束 # producer結束就意味着主進程代碼的結束 # consumer做爲守護進程結束 # consumer中queue中的全部數據被消費 # producer join結束 # 主進程的代碼結束 # consumer結束 # 主進程結束
Queue([maxsize])
建立共享的進程隊列。maxsize是隊列中容許的最大項數。若是省略此參數,則無大小限制。底層隊列使用管道和鎖定實現。另外,還須要運行支持線程以便隊列中的數據傳輸到底層管道中。
Queue的實例q具備如下方法:
q.get( [ block [ ,timeout ] ] )
返回q中的一個項目。若是q爲空,此方法將阻塞,直到隊列中有項目可用爲止。block用於控制阻塞行爲,默認爲True. 若是設置爲False,將引起Queue.Empty異常(定義在Queue模塊中)。timeout是可選超時時間,用在阻塞模式中。若是在制定的時間間隔內沒有項目變爲可用,將引起Queue.Empty異常。
q.get_nowait( )
同q.get(False)方法。
q.put(item [, block [,timeout ] ] )
將item放入隊列。若是隊列已滿,此方法將阻塞至有空間可用爲止。block控制阻塞行爲,默認爲True。若是設置爲False,將引起Queue.Empty異常(定義在Queue庫模塊中)。timeout指定在阻塞模式中等待可用空間的時間長短。超時後將引起Queue.Full異常。
q.qsize()
返回隊列中目前項目的正確數量。此函數的結果並不可靠,由於在返回結果和在稍後程序中使用結果之間,隊列中可能添加或刪除了項目。在某些系統上,此方法可能引起NotImplementedError異常。
q.empty()
若是調用此方法時 q爲空,返回True。若是其餘進程或線程正在往隊列中添加項目,結果是不可靠的。也就是說,在返回和使用結果之間,隊列中可能已經加入新的項目。
q.full()
若是q已滿,返回爲True. 因爲線程的存在,結果也多是不可靠的(參考q.empty()方法)。
JoinableQueue([maxsize])
建立可鏈接的共享進程隊列。這就像是一個Queue對象,但隊列容許項目的使用者通知生產者項目已經被成功處理。通知進程是使用共享的信號和條件變量來實現的。 數組
JoinableQueue的實例p除了與Queue對象相同的方法以外,還具備如下方法:
q.task_done()
使用者使用此方法發出信號,表示q.get()返回的項目已經被處理。若是調用此方法的次數大於從隊列中刪除的項目數量,將引起ValueError異常。
q.join()
生產者將使用此方法進行阻塞,直到隊列中全部項目均被處理。阻塞將持續到爲隊列中的每一個項目均調用q.task_done()方法爲止。
下面的例子說明如何創建永遠運行的進程,使用和處理隊列上的項目。生產者將項目放入隊列,並等待它們被處理。
from multiprocessing import Process,JoinableQueue import time,random,os def consumer(q): while True: res=q.get() time.sleep(random.randint(1,3)) print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res)) q.task_done() #向q.join()發送一次信號,證實一個數據已經被取走了 def producer(name,q): for i in range(10): time.sleep(random.randint(1,3)) res='%s%s' %(name,i) q.put(res) print('\033[44m%s 生產了 %s\033[0m' %(os.getpid(),res)) q.join() #生產完畢,使用此方法進行阻塞,直到隊列中全部項目均被處理。 if __name__ == '__main__': q=JoinableQueue() #生產者們:即廚師們 p1=Process(target=producer,args=('包子',q)) p2=Process(target=producer,args=('骨頭',q)) p3=Process(target=producer,args=('泔水',q)) #消費者們:即吃貨們 c1=Process(target=consumer,args=(q,)) c2=Process(target=consumer,args=(q,)) c1.daemon=True c2.daemon=True #開始 p_l=[p1,p2,p3,c1,c2] for p in p_l: p.start() p1.join() p2.join() p3.join() print('主') #主進程等--->p1,p2,p3等---->c1,c2 #p1,p2,p3結束了,證實c1,c2確定全都收完了p1,p2,p3發到隊列的數據 #於是c1,c2也沒有存在的價值了,不須要繼續阻塞在進程中影響主進程了。應該隨着主進程的結束而結束,因此設置成守護進程就能夠了。
管道是雙向通訊,數據進程不安全,隊列是管道加鎖來實現的安全
#建立管道的類: Pipe([duplex]):在進程之間建立一條管道,並返回元組(conn1,conn2),其中conn1,conn2表示管道兩端的鏈接對象,強調一點:必須在產生Process對象以前產生管道 #參數介紹: dumplex:默認管道是全雙工的,若是將duplex射成False,conn1只能用於接收,conn2只能用於發送。 #主要方法: conn1.recv():接收conn2.send(obj)發送的對象。若是沒有消息可接收,recv方法會一直阻塞。若是鏈接的另一端已經關閉,那麼recv方法會拋出EOFError。 conn1.send(obj):經過鏈接發送對象。obj是與序列化兼容的任意對象 #其餘方法: conn1.close():關閉鏈接。若是conn1被垃圾回收,將自動調用此方法 conn1.fileno():返回鏈接使用的整數文件描述符 conn1.poll([timeout]):若是鏈接上的數據可用,返回True。timeout指定等待的最長時限。若是省略此參數,方法將當即返回結果。若是將timeout射成None,操做將無限期地等待數據到達。 conn1.recv_bytes([maxlength]):接收c.send_bytes()方法發送的一條完整的字節消息。maxlength指定要接收的最大字節數。若是進入的消息,超過了這個最大值,將引起IOError異常,而且在鏈接上沒法進行進一步讀取。若是鏈接的另一端已經關閉,不再存在任何數據,將引起EOFError異常。 conn.send_bytes(buffer [, offset [, size]]):經過鏈接發送字節數據緩衝區,buffer是支持緩衝區接口的任意對象,offset是緩衝區中的字節偏移量,而size是要發送字節數。結果數據以單條消息的形式發出,而後調用c.recv_bytes()函數進行接收 conn1.recv_bytes_into(buffer [, offset]):接收一條完整的字節消息,並把它保存在buffer對象中,該對象支持可寫入的緩衝區接口(即bytearray對象或相似的對象)。offset指定緩衝區中放置消息處的字節位移。返回值是收到的字節數。若是消息長度大於可用的緩衝區空間,將引起BufferTooShort異常。
from multiprocessing import Process, Pipe def f(conn): conn.send("Hello The_Third_Wave") conn.close() if __name__ == '__main__': parent_conn, child_conn = Pipe() p = Process(target=f, args=(child_conn,)) p.start() print(parent_conn.recv()) p.join()
應該特別注意管道端點的正確管理問題。若是是生產者或消費者中都沒有使用管道的某個端點,就應將它關閉。這也說明了爲什麼在生產者中關閉了管道的輸出端,在消費者中關閉管道的輸入端。若是忘記執行這些步驟,程序可能在消費者中的recv()操做上掛起。管道是由操做系統進行引用計數的,必須在全部進程中關閉管道後才能生成EOFError異常。所以,在生產者中關閉管道不會有任何效果,除非消費者也關閉了相同的管道端點。 服務器
# 管道 # from multiprocessing import Pipe # left,right = Pipe() # left.send('1234') # print(right.recv()) # left.send('1234') # print(right.recv()) 管道的信息發送接收信息是不須要進行編碼轉碼的 from multiprocessing import Process, Pipe def f(parent_conn,child_conn): parent_conn.close() #不寫close將不會引起EOFError while True: try: print(child_conn.recv()) except EOFError: child_conn.close() break if __name__ == '__main__': parent_conn, child_conn = Pipe() p = Process(target=f, args=(parent_conn,child_conn,)) p.start() child_conn.close() parent_conn.send('hello') parent_conn.send('hello') parent_conn.send('hello') parent_conn.close() p.join()
展望將來,基於消息傳遞的併發編程是大勢所趨
即使是使用線程,推薦作法也是將程序設計爲大量獨立的線程集合,經過消息隊列交換數據。
這樣極大地減小了對使用鎖定和其餘同步手段的需求,還能夠擴展到分佈式系統中。
但進程間應該儘可能避免通訊,即使須要通訊,也應該選擇進程安全的工具來避免加鎖帶來的問題。
之後咱們會嘗試使用數據庫來解決如今進程之間的數據共享問題。
進程間數據是獨立的,能夠藉助於隊列或管道實現通訊,兩者都是基於消息傳遞的 雖然進程間數據獨立,但能夠經過Manager實現數據共享,事實上Manager的功能遠不止於此 A manager object returned by Manager() controls a server process which holds Python objects and allows other processes to manipulate them using proxies. A manager returned by Manager() will support types list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Barrier, Queue, Value and Array.
from multiprocessing import Manager,Process,Lock def work(d,lock): with lock: #不加鎖而操做共享的數據,確定會出現數據錯亂 d['count']-=1 if __name__ == '__main__': lock=Lock() with Manager() as m: dic=m.dict({'count':100}) p_l=[] for i in range(100): p=Process(target=work,args=(dic,lock)) p_l.append(p) p.start() for p in p_l: p.join() print(dic)
from multiprocessing import Manager,Process,Lock def func(dic,lock): # lock.acquire() # dic['count'] = dic['count']-1 # lock.release() with lock: # 上下文管理 :必須有一個開始動做 和 一個結束動做的時候 dic['count'] = dic['count'] - 1 if __name__ == '__main__': m = Manager() lock = Lock() dic = m.dict({'count':100}) p_lst = [] for i in range(100): p = Process(target=func,args=[dic,lock]) p_lst.append(p) p.start() for p in p_lst:p.join() print(dic) # 同一臺機器上 : Queue # 在不一樣臺機器上 :消息中間件
爲何要有進程池?進程池的概念。
在程序實際處理問題過程當中,忙時會有成千上萬的任務須要被執行,閒時可能只有零星任務。那麼在成千上萬個任務須要被執行的時候,咱們就須要去建立成千上萬個進程麼?首先,建立進程須要消耗時間,銷燬進程也須要消耗時間。第二即使開啓了成千上萬的進程,操做系統也不能讓他們同時執行,這樣反而會影響程序的效率。所以咱們不能無限制的根據任務開啓或者結束進程。那麼咱們要怎麼作呢?
在這裏,要給你們介紹一個進程池的概念,定義一個池子,在裏面放上固定數量的進程,有需求來了,就拿一個池中的進程來處理任務,等處處理完畢,進程並不關閉,而是將進程再放回進程池中繼續等待任務。若是有不少任務須要執行,池中的進程數量不夠,任務就要等待以前的進程執行任務完畢歸來,拿到空閒進程才能繼續執行。也就是說,池中進程的數量是固定的,那麼同一時間最多有固定數量的進程在運行。這樣不會增長操做系統的調度難度,還節省了開閉進程的時間,也必定程度上可以實現併發效果。
Pool([numprocess [,initializer [, initargs]]]):建立進程池
1 numprocess:要建立的進程數,若是省略,將默認使用cpu_count()的值 2 initializer:是每一個工做進程啓動時要執行的可調用對象,默認爲None 3 initargs:是要傳給initializer的參數組
1 p.apply(func [, args [, kwargs]]):在一個池工做進程中執行func(*args,**kwargs),而後返回結果。 2 '''須要強調的是:此操做並不會在全部池工做進程中並執行func函數。若是要經過不一樣參數併發地執行func函數,必須從不一樣線程調用p.apply()函數或者使用p.apply_async()''' 3 4 p.apply_async(func [, args [, kwargs]]):在一個池工做進程中執行func(*args,**kwargs),而後返回結果。 5 '''此方法的結果是AsyncResult類的實例,callback是可調用對象,接收輸入參數。當func的結果變爲可用時,將理解傳遞給callback。callback禁止執行任何阻塞操做,不然將接收其餘異步操做中的結果。''' 6 7 p.close():關閉進程池,防止進一步操做。若是全部操做持續掛起,它們將在工做進程終止前完成 8 9 P.jion():等待全部工做進程退出。此方法只能在close()或teminate()以後調用
1 方法apply_async()和map_async()的返回值是AsyncResul的實例obj。實例具備如下方法 2 obj.get():返回結果,若是有必要則等待結果到達。timeout是可選的。若是在指定時間內尚未到達,將引起一場。若是遠程操做中引起了異常,它將在調用此方法時再次被引起。 3 obj.ready():若是調用完成,返回True 4 obj.successful():若是調用完成且沒有引起異常,返回True,若是在結果就緒以前調用此方法,引起異常 5 obj.wait([timeout]):等待結果變爲可用。 6 obj.terminate():當即終止全部工做進程,同時不執行任何清理或結束任何掛起工做。若是p被垃圾回收,將自動調用此函數
import os,time from multiprocessing import Pool def work(n): print('%s run' %os.getpid()) time.sleep(3) return n**2 if __name__ == '__main__': p=Pool(3) #進程池中從無到有建立三個進程,之後一直是這三個進程在執行任務 res_l=[] for i in range(10): res=p.apply(work,args=(i,)) # 同步調用,直到本次任務執行完畢拿到res,等待任務work執行的過程當中可能有阻塞也可能沒有阻塞 # 但無論該任務是否存在阻塞,同步調用都會在原地等着 print(res_l)
import os import time import random from multiprocessing import Pool def work(n): print('%s run' %os.getpid()) time.sleep(random.random()) return n**2 if __name__ == '__main__': p=Pool(3) #進程池中從無到有建立三個進程,之後一直是這三個進程在執行任務 res_l=[] for i in range(10): res=p.apply_async(work,args=(i,)) # 異步運行,根據進程池中有的進程數,每次最多3個子進程在異步執行 # 返回結果以後,將結果放入列表,歸還進程,以後再執行新的任務 # 須要注意的是,進程池中的三個進程不會同時開啓或者同時結束 # 而是執行完一個就釋放一個進程,這個進程就去接收新的任務。 res_l.append(res) # 異步apply_async用法:若是使用異步提交的任務,主進程須要使用jion,等待進程池內任務都處理完,而後能夠用get收集結果 # 不然,主進程結束,進程池可能還沒來得及執行,也就跟着一塊兒結束了 p.close() p.join() for res in res_l: print(res.get()) #使用get來獲取apply_aync的結果,若是是apply,則沒有get方法,由於apply是同步執行,馬上獲取結果,也根本無需get
import time import random from multiprocessing import Pool def func(i): print('func%s' % i) time.sleep(random.randint(1,3)) return i**2 if __name__ == '__main__': p = Pool(5) ret_l = [] for i in range(15): # p.apply(func=func,args=(i,)) # 同步調用 ret = p.apply_async(func=func,args=(i,))# 異步調用 ret_l.append(ret) for ret in ret_l : print(ret.get()) # 主進程和全部的子進程異步了
須要回調函數的場景:進程池中任何一個任務一旦處理完了,就當即告知主進程:我好了額,你能夠處理個人結果了。主進程則調用一個函數去處理該結果,該函數即回調函數
咱們能夠把耗時間(阻塞)的任務放到進程池中,而後指定回調函數(主進程負責執行),這樣主進程在執行回調函數時就省去了I/O的過程,直接拿到的是任務的結果。
from multiprocessing import Pool import requests import json import os def get_page(url): print('<進程%s> get %s' %(os.getpid(),url)) respone=requests.get(url) if respone.status_code == 200: return {'url':url,'text':respone.text} def pasrse_page(res): print('<進程%s> parse %s' %(os.getpid(),res['url'])) parse_res='url:<%s> size:[%s]\n' %(res['url'],len(res['text'])) with open('db.txt','a') as f: f.write(parse_res) if __name__ == '__main__': urls=[ 'https://www.baidu.com', 'https://www.python.org', 'https://www.openstack.org', 'https://help.github.com/', 'http://www.sina.com.cn/' ] p=Pool(3) res_l=[] for url in urls: res=p.apply_async(get_page,args=(url,),callback=pasrse_page) res_l.append(res) p.close() p.join() print([res.get() for res in res_l]) #拿到的是get_page的結果,其實徹底不必拿該結果,該結果已經傳給回調函數處理了 ''' 打印結果: <進程3388> get https://www.baidu.com <進程3389> get https://www.python.org <進程3390> get https://www.openstack.org <進程3388> get https://help.github.com/ <進程3387> parse https://www.baidu.com <進程3389> get http://www.sina.com.cn/ <進程3387> parse https://www.python.org <進程3387> parse https://help.github.com/ <進程3387> parse http://www.sina.com.cn/ <進程3387> parse https://www.openstack.org [{'url': 'https://www.baidu.com', 'text': '<!DOCTYPE html>\r\n...',...}] '''
import os from urllib.request import urlopen from multiprocessing import Pool def get_url(url): print('-->',url,os.getpid()) ret = urlopen(url) content = ret.read() return url def call(url): # 分析 print(url,os.getpid()) if __name__ == '__main__': print(os.getpid()) l = [ 'http://www.baidu.com', # 5 'http://www.sina.com', 'http://www.sohu.com', 'http://www.sogou.com', 'http://www.qq.com', 'http://www.bilibili.com', #0.1 ] p = Pool(5) # count(cpu)+1 ret_l = [] for url in l: ret = p.apply_async(func = get_url,args=[url,],callback=call) ret_l.append(ret) for ret in ret_l : ret.get() # 回調函數 # 在進程池中,起了一個任務,這個任務對應的函數在執行完畢以後 # 的返回值會自動做爲參數返回給回調函數 # 回調函數就根據返回值再進行相應的處理 # 回調函數 是在主進程執行的