最強大腦數字華容道背後的數學知識

看過最新一期的最強大腦的應該對數字華容道遊戲留下了深入的印象吧!固然可能你們更多地是記住了賭王之子何猷君(妥妥的高富帥),關鍵智商還高,麻省理工學院畢業的他在最強大腦第一個項目中就以21秒的成績拿下了第一名。這瞬間讓他本人成爲各大媒體新聞的頭條,其實往屆的最強大腦我都沒全程追看過,可是天天刷微博的我看見了這個頭條後,仍是很好奇這個背景如此好的何猷君的智商究竟是不是新聞裏說的那麼神呢?而後看着看着就看完了一整季最強大腦。app

最強大腦裏的挑戰項目由簡到難,須要的道具也是愈來愈紛繁複雜。因爲數字華容道這個遊戲手機裏均可如下載,並且小時候也玩過相似的拼圖遊戲。因此我也下載一個叫作三國華容道的app。裏面有一類叫最強大腦的遊戲。選了其中的數字華容道就開始玩了,初始狀態以下圖:
initial
但是玩着玩着遇到了無解的狀況。一開始真是要懷疑本身的智商了,怎麼就還原不出來呢?
無解
後面本身還查了些資料,有人推薦用降階法的,看了解法視頻,開始以爲,額這解法不錯啊,我要按着這套路確定能解決個人問題。。。。。。spa

最後你懂的,真的是存在無解的狀況的。說到這,正好有個故事:視頻

註定無人能拿下的1000刀
19世紀90年代,自稱是15-puzzle(4×4)的發明人的Sam Loyd 曾懸賞1000美金,徵求能僅僅把14和15交換的方法,這也就是著名的重排十五問題。一千美金在當時很是吸引人,致使不少人不務
正業成了「賞金獵人」。可是很遺憾,誰也沒有拿走這它,或者能夠這樣說,其實誰也拿不走這一千美金。
https://1-im.guokr.com/gkimag...
clipboard.png遊戲

因此咱們接下來就來看看給定一個n*n初始狀態的推盤矩陣,怎麼判斷它可否復原成正確的順序呢?
首先咱們須要判斷n的奇偶性,其次再計算矩陣初始狀態的逆序數,結合逆序數的奇偶性就能夠判斷出奇數階的初始推盤遊戲可否通關。
逆序數的概念解釋請看這:逆序數ip

具體總結以下:get

  1. N爲奇數, 逆序數爲偶數則可解。
  2. N爲偶數:
    2.1 空格在偶數行(從矩陣的倒數第一行開始往上數,如倒數第二行,倒數第四行等)而且逆序數爲奇數則可解。
    2.2 空格在奇數行(從矩陣的倒數第一行開始往上數,如倒數第一行,倒數第三行等)而且逆序數爲偶數則可解。

最後回到我下載的遊戲存在無解的狀況說幾點:
1.對於手機遊戲來講這應該算是一個bug了,應在在生成矩陣的隨機初始狀態時計算其有解性,如無解應該從新生成直至初始狀態是可解的。要是最強大腦出現這種bug,那就要坑人了。
2.對於上面4*4無解的那個矩陣其實能夠將其排列成以下的狀態:
mirror
試想一下,若是是實物道具,將整個推盤逆時針旋轉90度,而後再將裏面的每一個數字塊順時針轉90度,其實也成功了有木有。那前面說的1000刀豈不是賺到了,你說呢?it

相關文章
相關標籤/搜索