1、數據集介紹java
數據來源:今日頭條客戶端git
數據格式以下:github
6551700932705387022_!_101_!_news_culture_!_京城最值得你來場文化之旅的博物館_!_保利集團,馬未都,中國科學技術館,博物館,新中國 6552368441838272771_!_101_!_news_culture_!_發酵牀的墊料種類有哪些?哪一種更好?_!_ 6552407965343678723_!_101_!_news_culture_!_上聯:黃山黃河黃皮膚黃土高原。怎麼對下聯?_!_ 6552332417753940238_!_101_!_news_culture_!_林徽因什麼理由拒絕了徐志摩而選擇梁思成爲終身伴侶?_!_ 6552475601595269390_!_101_!_news_culture_!_黃楊木是什麼樹?_!_
每行爲一條數據,以_!_分割的個字段,從前日後分別是 新聞ID,分類code(見下文),分類名稱(見下文),新聞字符串(僅含標題),新聞關鍵詞web
分類code與名稱:設計模式
100 民生 故事 news_story 101 文化 文化 news_culture 102 娛樂 娛樂 news_entertainment 103 體育 體育 news_sports 104 財經 財經 news_finance 106 房產 房產 news_house 107 汽車 汽車 news_car 108 教育 教育 news_edu 109 科技 科技 news_tech 110 軍事 軍事 news_military 112 旅遊 旅遊 news_travel 113 國際 國際 news_world 114 證券 股票 stock 115 農業 三農 news_agriculture 116 電競 遊戲 news_game
github地址:https://github.com/fate233/toutiao-text-classfication-dataset網絡
數據資源中給出了分類的實驗結果:架構
Test Loss: 0.57, Test Acc: 83.81% precision recall f1-score support news_story 0.66 0.75 0.70 848 news_culture 0.57 0.83 0.68 1531 news_entertainment 0.86 0.86 0.86 8078 news_sports 0.94 0.91 0.92 7338 news_finance 0.59 0.67 0.63 1594 news_house 0.84 0.89 0.87 1478 news_car 0.92 0.90 0.91 6481 news_edu 0.71 0.86 0.77 1425 news_tech 0.85 0.84 0.85 6944 news_military 0.90 0.78 0.84 6174 news_travel 0.58 0.76 0.66 1287 news_world 0.72 0.69 0.70 3823 stock 0.00 0.00 0.00 53 news_agriculture 0.80 0.88 0.84 1701 news_game 0.92 0.87 0.89 6244 avg / total 0.85 0.84 0.84 54999
下面咱們就來用deeplearning4j來實現一個卷積結構對該數據集進行分類,看能不能獲得更好的結果。app
2、卷積網絡能夠用於文本處理的緣由dom
CNN很是適合處理圖像數據,前面一篇文章《deeplearning4j——卷積神經網絡對驗證碼進行識別》介紹了CNN對驗證碼進行識別。本篇博客將利用CNN對文本進行分類,在開始以前咱們先來直觀的說說卷積運算在作的本質事情是什麼。卷積運算,本質上能夠看作兩個向量的點積,兩個向量越同向,點積就越大,通過relu和MaxPooling以後,本質上是提取了與卷積核最同向的結構,這個「結構」其實是圖片上的一些線條。ide
那麼文本能夠用CNN來處理嗎?答案是確定的,文本每一個詞用向量表示以後,依次排開,就變成了一張二維圖,以下圖,沿着紅色箭頭的方向(也就是文本的方向)看,兩個句子用一幅圖表示以後,會出現相同的單元,也就能夠用CNN來處理。
3、文本處理的卷積結構
那麼,怎麼設計這個CNN網絡結構呢?以下圖:(論文地址:https://arxiv.org/abs/1408.5882)
注意點:
一、卷積核移動的方向必須爲句子的方向
二、每一個卷積核提取的特徵爲N行1列的向量
三、MaxPooling的操做的對象是每個Feature Map,也就是從每個N行1列的向量中選擇一個最大值
四、把選擇的全部最大值接起來,通過幾個Fully Connected 層,進行分類
4、數據的預處理與詞向量
一、分詞工具:HanLP
二、處理後的數據格式以下:(類別code_!_詞,其中,詞與詞之間用空格隔開,_!_爲分割符)
數據預處理代碼以下:
public static void main(String[] args) throws Exception { BufferedReader bufferedReader = new BufferedReader(new InputStreamReader( new FileInputStream(new File("/toutiao_cat_data/toutiao_cat_data.txt")), "UTF-8")); OutputStreamWriter writerStream = new OutputStreamWriter( new FileOutputStream("/toutiao_cat_data/toutiao_data_type_word.txt"), "UTF-8"); BufferedWriter writer = new BufferedWriter(writerStream); String line = null; long startTime = System.currentTimeMillis(); while ((line = bufferedReader.readLine()) != null) { String[] array = line.split("_!_"); StringBuilder stringBuilder = new StringBuilder(); for (Term term : HanLP.segment(array[3])) { if (stringBuilder.length() > 0) { stringBuilder.append(" "); } stringBuilder.append(term.word.trim()); } writer.write(Integer.parseInt(array[1].trim()) + "_!_" + stringBuilder.toString() + "\n"); } writer.flush(); writer.close(); System.out.println(System.currentTimeMillis() - startTime); bufferedReader.close(); }
5、詞的向量表示
一、one-hot
用正交的向量來表示每個詞,這樣表示沒法反應詞與詞之間的關係,那麼兩句話中,要想複用同一個卷積核,那麼必須出現如出一轍的詞才能夠,實際上,咱們要求模型能夠觸類旁通,連類似的結構也能夠提取,那麼word2vec能夠解決這個問題。
二、word2vec
word2vec能夠充分考慮詞與詞之間的關係,類似的詞,確定有某些維度靠的比較近。那麼也就考慮了詞的語句之間的關係,訓練word2vec有兩種,skipgram和cbow,下面咱們用cbow來訓練詞向量,結果會持久化下來,就獲得了toutiao.vec的文件,下次變可從新加載該文件得到詞的向量表示,代碼以下:
String filePath = new ClassPathResource("toutiao_data_word.txt").getFile().getAbsolutePath(); SentenceIterator iter = new BasicLineIterator(filePath); TokenizerFactory t = new DefaultTokenizerFactory(); t.setTokenPreProcessor(new CommonPreprocessor()); VocabCache<VocabWord> cache = new AbstractCache<>(); WeightLookupTable<VocabWord> table = new InMemoryLookupTable.Builder<VocabWord>().vectorLength(100) .useAdaGrad(false).cache(cache).build(); log.info("Building model...."); Word2Vec vec = new Word2Vec.Builder() .elementsLearningAlgorithm("org.deeplearning4j.models.embeddings.learning.impl.elements.CBOW") .minWordFrequency(0).iterations(1).epochs(20).layerSize(100).seed(42).windowSize(8).iterate(iter) .tokenizerFactory(t).lookupTable(table).vocabCache(cache).build(); vec.fit(); WordVectorSerializer.writeWord2VecModel(vec, "/toutiao_cat_data/toutiao.vec");
6、CNN網絡結構
CNN網絡結構以下:
說明:
一、cnn三、cnn四、cnn五、cnn6卷積核大小爲(3,vectorSize)、(4,vectorSize)、(5,vectorSize)、(6,vectorSize),步幅爲1,也就是分別讀取三、四、五、6個詞,提取特徵
二、cnn3-stride二、cnn4-stride二、cnn5-stride二、cnn6-stride2卷積核大小爲(3,vectorSize)、(4,vectorSize)、(5,vectorSize)、(6,vectorSize),步幅爲2
三、兩組卷積核卷積的結果合併,分別獲得merge1和merge2,都是4維張量,形狀分別爲(batchSize,depth1+depth2+depth3,height/1,1),(batchSize,depth1+depth2+depth3,height/2,1),特別說明:這裏的卷積模式爲ConvolutionMode.Same
四、merge一、2分別通過MaxPooling,這裏用的是GlobalPoolingLayer,和平臺的Pooling層不一樣,這裏會從指定維度中,取一個最大值,因此通過GlobalPoolingLayer以後,merge一、2分別變成2維張量,形狀爲(batchSize,depth1+depth2+depth3),那麼GlobalPoolingLayer是如何求Max的呢?源碼以下:
private INDArray activateHelperFullArray(INDArray inputArray, int[] poolDim) { switch (poolingType) { case MAX: return inputArray.max(poolDim); case AVG: return inputArray.mean(poolDim); case SUM: return inputArray.sum(poolDim); case PNORM: //P norm: https://arxiv.org/pdf/1311.1780.pdf //out = (1/N * sum( |in| ^ p) ) ^ (1/p) int pnorm = layerConf().getPnorm(); INDArray abs = Transforms.abs(inputArray, true); Transforms.pow(abs, pnorm, false); INDArray pNorm = abs.sum(poolDim); return Transforms.pow(pNorm, 1.0 / pnorm, false); default: throw new RuntimeException("Unknown or not supported pooling type: " + poolingType + " " + layerId()); } }
五、兩邊GlobalPoolingLayer結果再接起來,丟給全鏈接網絡,通過softmax分類器進行分類
六、fc層,用了0.5的dropout防止過擬合,在下面的代碼中能夠看到。
完整代碼以下:
public class CnnSentenceClassificationTouTiao { public static void main(String[] args) throws Exception { List<String> trainLabelList = new ArrayList<>();// 訓練集label List<String> trainSentences = new ArrayList<>();// 訓練集文本集合 List<String> testLabelList = new ArrayList<>();// 測試集label List<String> testSentences = new ArrayList<>();//// 測試集文本集合 Map<String, List<String>> map = new HashMap<>(); BufferedReader bufferedReader = new BufferedReader(new InputStreamReader( new FileInputStream(new File("/toutiao_cat_data/toutiao_data_type_word.txt")), "UTF-8")); String line = null; int truncateReviewsToLength = 0; Random random = new Random(123); while ((line = bufferedReader.readLine()) != null) { String[] array = line.split("_!_"); if (map.get(array[0]) == null) { map.put(array[0], new ArrayList<String>()); } map.get(array[0]).add(array[1]);// 將樣本中全部數據,按照類別歸類 int length = array[1].split(" ").length; if (length > truncateReviewsToLength) { truncateReviewsToLength = length;// 求樣本中,句子的最大長度 } } bufferedReader.close(); for (Map.Entry<String, List<String>> entry : map.entrySet()) { for (String sentence : entry.getValue()) { if (random.nextInt() % 5 == 0) {// 每一個類別抽取20%做爲test集 testLabelList.add(entry.getKey()); testSentences.add(sentence); } else { trainLabelList.add(entry.getKey()); trainSentences.add(sentence); } } } int batchSize = 64; int vectorSize = 100; int nEpochs = 10; int cnnLayerFeatureMaps = 50; PoolingType globalPoolingType = PoolingType.MAX; Random rng = new Random(12345); Nd4j.getMemoryManager().setAutoGcWindow(5000); ComputationGraphConfiguration config = new NeuralNetConfiguration.Builder().weightInit(WeightInit.RELU) .activation(Activation.LEAKYRELU).updater(new Nesterovs(0.01, 0.9)) .convolutionMode(ConvolutionMode.Same).l2(0.0001).graphBuilder().addInputs("input") .addLayer("cnn3", new ConvolutionLayer.Builder().kernelSize(3, vectorSize).stride(1, vectorSize) .nOut(cnnLayerFeatureMaps).build(), "input") .addLayer("cnn4", new ConvolutionLayer.Builder().kernelSize(4, vectorSize).stride(1, vectorSize) .nOut(cnnLayerFeatureMaps).build(), "input") .addLayer("cnn5", new ConvolutionLayer.Builder().kernelSize(5, vectorSize).stride(1, vectorSize) .nOut(cnnLayerFeatureMaps).build(), "input") .addLayer("cnn6", new ConvolutionLayer.Builder().kernelSize(6, vectorSize).stride(1, vectorSize) .nOut(cnnLayerFeatureMaps).build(), "input") .addLayer("cnn3-stride2", new ConvolutionLayer.Builder().kernelSize(3, vectorSize).stride(2, vectorSize) .nOut(cnnLayerFeatureMaps).build(), "input") .addLayer("cnn4-stride2", new ConvolutionLayer.Builder().kernelSize(4, vectorSize).stride(2, vectorSize) .nOut(cnnLayerFeatureMaps).build(), "input") .addLayer("cnn5-stride2", new ConvolutionLayer.Builder().kernelSize(5, vectorSize).stride(2, vectorSize) .nOut(cnnLayerFeatureMaps).build(), "input") .addLayer("cnn6-stride2", new ConvolutionLayer.Builder().kernelSize(6, vectorSize).stride(2, vectorSize) .nOut(cnnLayerFeatureMaps).build(), "input") .addVertex("merge1", new MergeVertex(), "cnn3", "cnn4", "cnn5", "cnn6") .addLayer("globalPool1", new GlobalPoolingLayer.Builder().poolingType(globalPoolingType).build(), "merge1") .addVertex("merge2", new MergeVertex(), "cnn3-stride2", "cnn4-stride2", "cnn5-stride2", "cnn6-stride2") .addLayer("globalPool2", new GlobalPoolingLayer.Builder().poolingType(globalPoolingType).build(), "merge2") .addLayer("fc", new DenseLayer.Builder().nOut(200).dropOut(0.5).activation(Activation.LEAKYRELU).build(), "globalPool1", "globalPool2") .addLayer("out", new OutputLayer.Builder().lossFunction(LossFunctions.LossFunction.MCXENT) .activation(Activation.SOFTMAX).nOut(15).build(), "fc") .setOutputs("out").setInputTypes(InputType.convolutional(truncateReviewsToLength, vectorSize, 1)) .build(); ComputationGraph net = new ComputationGraph(config); net.init(); System.out.println(net.summary()); Word2Vec word2Vec = WordVectorSerializer.readWord2VecModel("/toutiao_cat_data/toutiao.vec"); System.out.println("Loading word vectors and creating DataSetIterators"); DataSetIterator trainIter = getDataSetIterator(word2Vec, batchSize, truncateReviewsToLength, trainLabelList, trainSentences, rng); DataSetIterator testIter = getDataSetIterator(word2Vec, batchSize, truncateReviewsToLength, testLabelList, testSentences, rng); UIServer uiServer = UIServer.getInstance(); StatsStorage statsStorage = new InMemoryStatsStorage(); uiServer.attach(statsStorage); net.setListeners(new ScoreIterationListener(100), new StatsListener(statsStorage, 20), new EvaluativeListener(testIter, 1, InvocationType.EPOCH_END)); // net.setListeners(new ScoreIterationListener(100), // new EvaluativeListener(testIter, 1, InvocationType.EPOCH_END)); net.fit(trainIter, nEpochs); } private static DataSetIterator getDataSetIterator(WordVectors wordVectors, int minibatchSize, int maxSentenceLength, List<String> lableList, List<String> sentences, Random rng) { LabeledSentenceProvider sentenceProvider = new CollectionLabeledSentenceProvider(sentences, lableList, rng); return new CnnSentenceDataSetIterator.Builder().sentenceProvider(sentenceProvider).wordVectors(wordVectors) .minibatchSize(minibatchSize).maxSentenceLength(maxSentenceLength).useNormalizedWordVectors(false) .build(); } }
代碼說明:
一、代碼分兩部分,第一部分是數據預處理,分出20%測試集、80%做爲訓練集
二、第二部分爲網絡的基本結構代碼
網絡參數詳細以下:
=============================================================================================================================================== VertexName (VertexType) nIn,nOut TotalParams ParamsShape Vertex Inputs =============================================================================================================================================== input (InputVertex) -,- - - - cnn3 (ConvolutionLayer) 1,50 15050 W:{50,1,3,100}, b:{1,50} [input] cnn4 (ConvolutionLayer) 1,50 20050 W:{50,1,4,100}, b:{1,50} [input] cnn5 (ConvolutionLayer) 1,50 25050 W:{50,1,5,100}, b:{1,50} [input] cnn6 (ConvolutionLayer) 1,50 30050 W:{50,1,6,100}, b:{1,50} [input] cnn3-stride2 (ConvolutionLayer) 1,50 15050 W:{50,1,3,100}, b:{1,50} [input] cnn4-stride2 (ConvolutionLayer) 1,50 20050 W:{50,1,4,100}, b:{1,50} [input] cnn5-stride2 (ConvolutionLayer) 1,50 25050 W:{50,1,5,100}, b:{1,50} [input] cnn6-stride2 (ConvolutionLayer) 1,50 30050 W:{50,1,6,100}, b:{1,50} [input] merge1 (MergeVertex) -,- - - [cnn3, cnn4, cnn5, cnn6] merge2 (MergeVertex) -,- - - [cnn3-stride2, cnn4-stride2, cnn5-stride2, cnn6-stride2] globalPool1 (GlobalPoolingLayer) -,- 0 - [merge1] globalPool2 (GlobalPoolingLayer) -,- 0 - [merge2] fc-merge (MergeVertex) -,- - - [globalPool1, globalPool2] fc (DenseLayer) 400,200 80200 W:{400,200}, b:{1,200} [fc-merge] out (OutputLayer) 200,15 3015 W:{200,15}, b:{1,15} [fc] ----------------------------------------------------------------------------------------------------------------------------------------------- Total Parameters: 263615 Trainable Parameters: 263615 Frozen Parameters: 0 ===============================================================================================================================================
DL4J的UIServer界面以下,這裏我給定的端口號爲9001,打開web界面能夠看到平均loss的詳情,梯度更新的詳情等
http://localhost:9001/train/overview
7、掩模
句子有長有短,CNN將如何處理呢?
處理的辦法其實很暴力,將一個minibatch中的最長句子找到,new出最大長度的張量,多餘值用掩模掩掉便可,廢話很少說,直接上代碼
if(sentencesAlongHeight){ featuresMask = Nd4j.create(currMinibatchSize, 1, maxLength, 1); for (int i = 0; i < currMinibatchSize; i++) { int sentenceLength = tokenizedSentences.get(i).getFirst().size(); if (sentenceLength >= maxLength) { featuresMask.slice(i).assign(1.0); } else { featuresMask.get(NDArrayIndex.point(i), NDArrayIndex.point(0), NDArrayIndex.interval(0, sentenceLength), NDArrayIndex.point(0)).assign(1.0); } } } else { featuresMask = Nd4j.create(currMinibatchSize, 1, 1, maxLength); for (int i = 0; i < currMinibatchSize; i++) { int sentenceLength = tokenizedSentences.get(i).getFirst().size(); if (sentenceLength >= maxLength) { featuresMask.slice(i).assign(1.0); } else { featuresMask.get(NDArrayIndex.point(i), NDArrayIndex.point(0), NDArrayIndex.point(0), NDArrayIndex.interval(0, sentenceLength)).assign(1.0); } } }
這裏爲何有個if呢?生成句子張量的時候,能夠任意指定句子的方向,能夠沿着矩陣中height的方向,也能夠是width的方向,方向不一樣,填掩模的那一維也就不一樣。
8、結果
運行了10個Epoch結果以下:
========================Evaluation Metrics======================== # of classes: 15 Accuracy: 0.8420 Precision: 0.8362 (1 class excluded from average) Recall: 0.7783 F1 Score: 0.8346 (1 class excluded from average) Precision, recall & F1: macro-averaged (equally weighted avg. of 15 classes) Warning: 1 class was never predicted by the model and was excluded from average precision Classes excluded from average precision: [12] =========================Confusion Matrix========================= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ---------------------------------------------------------------------------- 973 35 114 2 9 8 11 19 14 6 19 11 0 22 13 | 0 = 0 17 4636 250 37 51 16 14 151 47 29 232 36 0 82 44 | 1 = 1 103 176 6980 108 16 8 31 62 83 41 53 77 0 36 163 | 2 = 2 9 78 244 6692 37 9 52 59 33 27 57 54 0 10 96 | 3 = 3 7 52 36 31 4072 96 101 107 581 20 64 108 0 135 37 | 4 = 4 12 18 22 8 150 3061 27 36 53 2 100 16 0 56 2 | 5 = 5 17 38 71 26 94 13 6443 43 174 31 121 39 0 32 34 | 6 = 6 17 157 93 49 62 20 34 4793 85 14 58 36 0 49 31 | 7 = 7 1 45 71 21 436 30 195 138 7018 48 54 49 0 45 148 | 8 = 8 24 74 84 47 24 1 57 50 68 3963 45 431 0 9 65 | 9 = 9 9 165 90 21 40 37 61 40 42 21 3428 111 0 78 30 | 10 = 10 47 78 173 52 114 20 48 67 93 320 140 4097 0 48 29 | 11 = 11 0 0 0 0 60 0 1 0 5 0 0 0 0 0 0 | 12 = 12 35 105 31 6 139 37 34 61 79 11 153 35 0 3187 12 | 13 = 13 14 36 210 128 31 2 19 20 164 44 38 15 0 19 5183 | 14 = 14
平均準確率0.8420,比原資源中給定的結果略好,F1 score要略差一點,混淆矩陣中,有一個類別,沒法被預測到,是由於樣本中改類別數據量自己不多,難以抓到共性特徵。這裏參數若是精心調節一番,迭代更屢次數,理論上會有更好的表現。
9、後記
讀Deeplearning4j是一種享受,優雅的架構,清晰的邏輯,多種設計模式,擴展性強,將有後續博客,對dl4j源碼進行剖析。
快樂源於分享。
此博客乃做者原創, 轉載請註明出處