- 查詢語言。因爲 SQL 被普遍的應用在數據倉庫中,所以,專門針對 Hive 的特性設計了類 SQL 的查詢語言 HQL。熟悉 SQL 開發的開發者能夠很方便的使用 Hive 進行開發。
- 數據存儲位置。Hive 是創建在 Hadoop 之上的,全部 Hive 的數據都是存儲在 HDFS 中的。而數據庫則能夠將數據保存在塊設備或者本地文件系統中。
- 數據格式。Hive 中沒有定義專門的數據格式,數據格式能夠由用戶指定,用戶定義數據格式須要指定三個屬性:列分隔符(一般爲空格、」\t」、」\x001″)、行分隔符(」\n」)以及讀取文件數據的方法(Hive 中默認有三個文件格式 TextFile,SequenceFile 以及 RCFile因爲在加載數據的過程當中,不須要從用戶數據格式到 Hive 定義的數據格式的轉換,所以,Hive 在加載的過程當中不會對數據自己進行任何修改,而只是將數據內容複製或者移動到相應的 HDFS 目錄中。而在數據庫中,不一樣的數據庫有不一樣的存儲引擎,定義了本身的數據格式。全部數據都會按照必定的組織存儲,所以,數據庫加載數據的過程會比較耗時。
- 數據更新。因爲 Hive 是針對數據倉庫應用設計的,而數據倉庫的內容是讀多寫少的。所以,Hive 中不支持對數據的改寫和添加,全部的數據都是在加載的時候中肯定好的。而數據庫中的數據一般是須要常常進行修改的,所以可使用 INSERT INTO ... VALUES 添加數據,使用 UPDATE ... SET 修改數據。
- 索引。以前已經說過,Hive 在加載數據的過程當中不會對數據進行任何處理,甚至不會對數據進行掃描,所以也沒有對數據中的某些 Key 創建索引。Hive 要訪問數據中知足條件的特定值時,須要暴力掃描整個數據,所以訪問延遲較高。因爲 MapReduce 的引入, Hive 能夠並行訪問數據,所以即便沒有索引,對於大數據量的訪問,Hive 仍然能夠體現出優點。數據庫中,一般會針對一個或者幾個列創建索引,所以對於少許的特定條件的數據的訪問,數據庫能夠有很高的效率,較低的延遲。因爲數據的訪問延遲較高,決定了 Hive 不適合在線數據查詢。
- 執行。Hive 中大多數查詢的執行是經過 Hadoop 提供的 MapReduce 來實現的(相似 select * from tbl 的查詢不須要 MapReduce)。而數據庫一般有本身的執行引擎。
- 執行延遲。以前提到,Hive 在查詢數據的時候,因爲沒有索引,須要掃描整個表,所以延遲較高。另一個致使 Hive 執行延遲高的因素是 MapReduce 框架。因爲 MapReduce 自己具備較高的延遲,所以在利用 MapReduce 執行 Hive 查詢時,也會有較高的延遲。相對的,數據庫的執行延遲較低。固然,這個低是有條件的,即數據規模較小,當數據規模大到超過數據庫的處理能力的時候,Hive 的並行計算顯然能體現出優點。
- 可擴展性。因爲 Hive 是創建在 Hadoop 之上的,所以 Hive 的可擴展性是和 Hadoop 的可擴展性是一致的(世界上最大的 Hadoop 集羣在 Yahoo!,2009年的規模在 4000 臺節點左右)。而數據庫因爲 ACID 語義的嚴格限制,擴展行很是有限。目前最早進的並行數據庫 Oracle 在理論上的擴展能力也只有 100 臺左右。
- 數據規模。因爲 Hive 創建在集羣上並能夠利用 MapReduce 進行並行計算,所以能夠支持很大規模的數據;對應的,數據庫能夠支持的數據規模較小。
免費觀看超人學院公開課視頻 關注超人學院微信號數據庫
瞭解更多詳情請登陸超人學院網站http://www.crxy.cn?sxy微信