JavaShuo
欄目
標籤
AM-Softmax Loss
時間 2020-12-30
原文
原文鏈接
《Additive Margin Softmax for Face Verification》 2018,Feng Wang et al. 引言: 本文提出一個概念上簡單且幾何上可解釋的目標函數:additive margin Softmax (AM-Softmax),用於深度人臉驗證,使得人臉特徵具有更大的類間距和更小的類內距。同時,本文強調和討論了特徵歸一化的重要性。實驗表明AM-Softma
>>阅读原文<<
相關文章
1.
人臉識別:AMSoftmax Loss
2.
AMSoftmax
3.
人臉識別:arcFace Loss詳解
4.
人臉識別 -- AMSoftmax : Additive Margin Softmax for Face Verification
5.
Triplet Loss, Ranking Loss, Margin Loss
6.
一文理解Ranking Loss/Contrastive Loss/Margin Loss/Triplet Loss/Hinge Loss
7.
Circle Loss: A Unified Perspective of Pair Similarity Optimization
8.
perceptual loss 和adversial loss
9.
LapSRN的Loss: Carbonnier Loss
10.
一文理解Ranking Loss/Margin Loss/Triplet Loss
更多相關文章...
•
CAP理論是什麼?
-
NoSQL教程
相關標籤/搜索
loss
acc+loss+val
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
【Java8新特性_尚硅谷】P1_P5
2.
SpringSecurity 基礎應用
3.
SlowFast Networks for Video Recognition
4.
074-enable-right-click
5.
WindowFocusListener窗體焦點監聽器
6.
DNS部署(二)DNS的解析(正向、反向、雙向、郵件解析及域名轉換)
7.
Java基礎(十九)集合(1)集合中主要接口和實現類
8.
瀏覽器工作原理學習筆記
9.
chrome瀏覽器構架學習筆記
10.
eclipse引用sun.misc開頭的類
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
人臉識別:AMSoftmax Loss
2.
AMSoftmax
3.
人臉識別:arcFace Loss詳解
4.
人臉識別 -- AMSoftmax : Additive Margin Softmax for Face Verification
5.
Triplet Loss, Ranking Loss, Margin Loss
6.
一文理解Ranking Loss/Contrastive Loss/Margin Loss/Triplet Loss/Hinge Loss
7.
Circle Loss: A Unified Perspective of Pair Similarity Optimization
8.
perceptual loss 和adversial loss
9.
LapSRN的Loss: Carbonnier Loss
10.
一文理解Ranking Loss/Margin Loss/Triplet Loss
>>更多相關文章<<