JavaShuo
欄目
標籤
18-Rethinking-ImageNet-Pre-training
時間 2021-01-02
原文
原文鏈接
what 在目標檢測和實例分割兩個領域,我們使用隨機初始化方法訓練的模型,在 COCO 數據集上取得了非常魯棒的結果。其結果並不比使用了 ImageNet 預訓練的方法差,即使那些方法使用了 MaskR-CNN 系列基準的超參數。在以下三種情況,得到的結果仍然沒有降低: 僅使用 10% 的訓練數據; 使用更深和更寬的模型 使用多個任務和指標。 ImageNet 預訓練模型並非必須,ImageNet
>>阅读原文<<
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
在windows下的虛擬機中,安裝華爲電腦的deepin操作系統
2.
強烈推薦款下載不限速解析神器
3.
【區塊鏈技術】孫宇晨:區塊鏈技術帶來金融服務的信任變革
4.
搜索引起的鏈接分析-計算網頁的重要性
5.
TiDB x 微衆銀行 | 耗時降低 58%,分佈式架構助力實現普惠金融
6.
《數字孿生體技術白皮書》重磅發佈(附完整版下載)
7.
雙十一「避坑」指南:區塊鏈電子合同爲電商交易保駕護航!
8.
區塊鏈產業,怎樣「鏈」住未來?
9.
OpenglRipper使用教程
10.
springcloud請求一次好用一次不好用zuul Name or service not known
本站公眾號
歡迎關注本站公眾號,獲取更多信息