epoll - I/O event notification facility
在linux的網絡編程中,很長的時間都在使用select來作事件觸發。在linux新的內核中,有了一種替換它的機制,就是epoll。
相比於select,epoll最大的好處在於它不會隨着監聽fd數目的增加而下降效率。由於在內核中的select實現中,它是採用輪詢來處理的,輪詢的fd數目越多,天然耗時越多。而且,在linux/posix_types.h頭文件有這樣的聲明:
#define __FD_SETSIZE 1024
表示select最多同時監聽1024個fd,固然,能夠經過修改頭文件再重編譯內核來擴大這個數目,但這彷佛並不治本。
epoll的接口很是簡單,一共就三個函數:
1. int epoll_create(int size);
建立一個epoll的句柄,size用來告訴內核這個監聽的數目一共有多大。這個參數不一樣於select()中的第一個參數,給出最大監聽的fd+1的值。須要注意的是,當建立好epoll句柄後,它就是會佔用一個fd值,在linux下若是查看/proc/進程id/fd/,是可以看到這個fd的,因此在使用完epoll後,必須調用close()關閉,不然可能致使fd被耗盡。
2. int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
epoll的事件註冊函數,它不一樣與select()是在監聽事件時告訴內核要監聽什麼類型的事件,而是在這裏先註冊要監聽的事件類型。第一個參數是epoll_create()的返回值,第二個參數表示動做,用三個宏來表示:
EPOLL_CTL_ADD:註冊新的fd到epfd中;
EPOLL_CTL_MOD:修改已經註冊的fd的監聽事件;
EPOLL_CTL_DEL:從epfd中刪除一個fd;
第三個參數是須要監聽的fd,第四個參數是告訴內核須要監聽什麼事,struct epoll_event結構以下:
typedef union epoll_data {
void *ptr;
int fd;
__uint32_t u32;
__uint64_t u64;
} epoll_data_t;
struct epoll_event {
__uint32_t events; /* Epoll events */
epoll_data_t data; /* User data variable */
};
events能夠是如下幾個宏的集合:
EPOLLIN :表示對應的文件描述符能夠讀(包括對端SOCKET正常關閉);
EPOLLOUT:表示對應的文件描述符能夠寫;
EPOLLPRI:表示對應的文件描述符有緊急的數據可讀(這裏應該表示有帶外數據到來);
EPOLLERR:表示對應的文件描述符發生錯誤;
EPOLLHUP:表示對應的文件描述符被掛斷;
EPOLLET: 將EPOLL設爲邊緣觸發(Edge Triggered)模式,這是相對於水平觸發(Level Triggered)來講的。
EPOLLONESHOT:只監聽一次事件,當監聽完此次事件以後,若是還須要繼續監聽這個socket的話,須要再次把這個socket加入到EPOLL隊列裏
3. int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
等待事件的產生,相似於select()調用。參數events用來從內核獲得事件的集合,maxevents告以內核這個events有多大,這個 maxevents的值不能大於建立epoll_create()時的size,參數timeout是超時時間(毫秒,0會當即返回,-1將不肯定,也有說法說是永久阻塞)。該函數返回須要處理的事件數目,如返回0表示已超時。
四、關於ET、LT兩種工做模式:
能夠得出這樣的結論:
ET模式僅當狀態發生變化的時候纔得到通知,這裏所謂的狀態的變化並不包括緩衝區中還有未處理的數據,也就是說,若是要採用ET模式,須要一直read/write直到出錯爲止,不少人反映爲何採用ET模式只接收了一部分數據就再也得不到通知了,大多由於這樣;而LT模式是隻要有數據沒有處理就會一直通知下去的.
那麼究竟如何來使用epoll呢?其實很是簡單。
經過在包含一個頭文件#include <sys/epoll.h> 以及幾個簡單的API將能夠大大的提升你的網絡服務器的支持人數。
首先經過create_epoll(int maxfds)來建立一個epoll的句柄,其中maxfds爲你epoll所支持的最大句柄數。這個函數會返回一個新的epoll句柄,以後的全部操做將經過這個句柄來進行操做。在用完以後,記得用close()來關閉這個建立出來的epoll句柄。
以後在你的網絡主循環裏面,每一幀的調用epoll_wait(int epfd, epoll_event events, int max events, int timeout)來查詢全部的網絡接口,看哪個能夠讀,哪個能夠寫了。基本的語法爲:
nfds = epoll_wait(kdpfd, events, maxevents, -1);
其中kdpfd爲用epoll_create建立以後的句柄,events是一個epoll_event*的指針,當epoll_wait這個函數操做成功以後,epoll_events裏面將儲存全部的讀寫事件。max_events是當前須要監聽的全部socket句柄數。最後一個timeout是 epoll_wait的超時,爲0的時候表示立刻返回,爲-1的時候表示一直等下去,直到有事件範圍,爲任意正整數的時候表示等這麼長的時間,若是一直沒有事件,則範圍。通常若是網絡主循環是單獨的線程的話,能夠用-1來等,這樣能夠保證一些效率,若是是和主邏輯在同一個線程的話,則能夠用0來保證主循環的效率。
epoll_wait範圍以後應該是一個循環,遍利全部的事件。
幾乎全部的epoll程序都使用下面的框架:
for( ; ; )
{
nfds = epoll_wait(epfd,events,20,500);
for(i=0;i<nfds;++i)
{
if(events[i].data.fd==listenfd) //有新的鏈接
{
connfd = accept(listenfd,(sockaddr *)&clientaddr, &clilen); //accept這個鏈接
ev.data.fd=connfd;
ev.events=EPOLLIN|EPOLLET;
epoll_ctl(epfd,EPOLL_CTL_ADD,connfd,&ev); //將新的fd添加到epoll的監聽隊列中
}
else if( events[i].events&EPOLLIN ) //接收到數據,讀socket
{
n = read(sockfd, line, MAXLINE)) < 0 //讀
ev.data.ptr = md; //md爲自定義類型,添加數據
ev.events=EPOLLOUT|EPOLLET;
epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev);//修改標識符,等待下一個循環時發送數據,異步處理的精髓
}
else if(events[i].events&EPOLLOUT) //有數據待發送,寫socket
{
struct myepoll_data* md = (myepoll_data*)events[i].data.ptr; //取數據
sockfd = md->fd;
send( sockfd, md->ptr, strlen((char*)md->ptr), 0 ); //發送數據
ev.data.fd=sockfd;
ev.events=EPOLLIN|EPOLLET;
epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev); //修改標識符,等待下一個循環時接收數據
}
else
{
//其餘的處理
}
}
}
下面給出一個完整的服務器端例子:
linux
|
客戶端直接鏈接到這個服務器就行了。。編程
轉自:http://blog.csdn.net/ljx0305/article/details/4065058數組