思路:ios
明顯的能夠想到,狀態轉移方程爲:數組
當x[i] == y[j]時,dp[i][j] = dp[i-1][j-1]+1優化
當x[i] != y[j]時,dp[i][j] = max(dp[i-1][j], dp[i][j-1])spa
這種方法能夠結合下面的決策矩陣和代碼加深理解(參考自https://blog.csdn.net/linraise/article/details/9104975.net
1 #include<iostream> 2 using namespace std; 3 #define M 7 4 #define N 6 5 int b[M + 1][N + 1] = {0}; //存方向 6 int c[M + 1][N + 1] = {0}; //存值 7 8 void Lcs_Length(char *X, char *Y) 9 { 10 int i, j; 11 for(i = 1; i <= M; i++) 12 c[i][0] = 0; 13 for(j = 0; j <= N; j++) 14 c[0][j] = 0; 15 for(i = 1; i <= M; i++) 16 { 17 for(j = 1; j <= N; j++) 18 { 19 if(X[i] == Y[j]) //比較兩個字串對應位,若是相等,則=對角+1 20 { 21 c[i][j] = c[i - 1][j - 1] + 1; 22 b[i][j] = 1; //1表明↖ 23 } 24 else if(c[i - 1][j] >= c[i][j - 1]) //若是上面值>=下面值 25 { 26 c[i][j] = c[i - 1][j]; //c[i][j]=大值 27 b[i][j] = 2; //2表明↑ 28 } 29 else 30 { 31 c[i][j] = c[i][j - 1]; //賦的老是大值,箭頭老是指向大值 32 b[i][j] = 3; //3表明← 33 } 34 } 35 } 36 } 37 void Print_Lcs(char *X, int i, int j) 38 { 39 if(i == 0 || j == 0) 40 return ; 41 if(b[i][j] == 1) 42 { 43 Print_Lcs(X, i - 1, j - 1); 44 cout << X[i] << ' '; //只需輸出↖對應的值 45 } 46 else if(b[i][j] == 2) 47 Print_Lcs(X, i - 1, j); 48 else Print_Lcs(X, i, j - 1); 49 } 50 int main() 51 { 52 char X[M + 1] = {'0', 'A', 'B', 'C', 'B', 'D', 'A', 'B'}; 53 char Y[N + 1] = {'0', 'B', 'D', 'C', 'A', 'B', 'A'}; 54 Lcs_Length(X, Y); 55 Print_Lcs(X, M, N); 56 cout << endl; 57 for(int i = 0; i <= M; i++) 58 { 59 for(int j = 0; j <= N; j++) 60 { 61 cout << c[i][j] << ' '; 62 } 63 cout << endl; 64 } 65 cout << endl; 66 for(int i = 0; i <= M; i++) 67 { 68 for(int j = 0; j <= N; j++) 69 { 70 switch(b[i][j]) 71 { 72 case 0: 73 { 74 cout << b[i][j] << " "; 75 break; 76 } 77 case 1: 78 { 79 cout << '\\' << ' ' << ' '; 80 break; 81 } 82 case 2: 83 { 84 cout << '|' << ' ' << ' '; 85 break; 86 } 87 case 3: 88 { 89 cout << '-' << ' ' << ' '; 90 break; 91 } 92 } 93 } 94 cout << endl; 95 } 96 return 0; 97 }
進一步分析:code
這種動態規劃作法,用空間換取時間,對比暴力法,時間複雜度由O(m2n2)下降到了O(n2),那麼有沒有什麼方法能進一步優化空間複雜度呢?答案是確定的。分析上面的決策矩陣,發現每一行的值都是由上一行決定的,因此前面行的值是能夠捨棄,沒必要保存的,這就能夠使用滾動數組進行空間優化。blog
for(i = 1; i <= m; i++) { for(j = 1; j <= n; j++) { if(x[i] == y[j]) dp[i % 2][j] = dp[(i - 1) % 2][j - 1] + 1; else if(dp[(i - 1) % 2][j] >= dp[i % 2][j - 1]) dp[i % 2][j] = dp[(i - 1) % 2][j]; else dp[i % 2][j] = dp[i % 2][j - 1]; } }
那麼O(n2)的時間複雜度能繼續優化嗎?答案也是確定的。作法是將LCS問題轉換成O(nlogn)的LIS問題來求解,後續補充~get
reference:it