A:顯然排序便可。html
#include<bits/stdc++.h> using namespace std; #define ll long long #define inf 1000000010 #define N 1010 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,a[N<<1]; signed main() { n=read(); for (int i=1;i<=2*n;i++ )a[i]=read(); sort(a+1,a+2*n+1);int s=0; for (int i=1;i<=n;i++) s+=a[i]; int s2=0;for (int i=n+1;i<=2*n;i++) s2+=a[i]; if (s!=s2) {for (int i=1;i<=2*n;i++) cout<<a[i]<<' ';} else cout<<-1; return 0; //NOTICE LONG LONG!!!!! }
B:若奇偶數均存在就能夠任意交換,sort便可。不然沒法改變。c++
#include<bits/stdc++.h> using namespace std; #define ll long long #define inf 1000000010 #define N 100010 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,a[N]; signed main() { n=read(); for (int i=1;i<=n;i++) a[i]=read(); int s=0,s2=0; for (int i=1;i<=n;i++) if (a[i]&1) s++;else s2++; if (s&&s2) sort(a+1,a+n+1); for (int i=1;i<=n;i++) printf("%d ",a[i]); return 0; //NOTICE LONG LONG!!!!! }
C:質數下標之間須要兩兩不一樣,因而最大值就是<=n的質數個數。對於合數,將其設爲其最小質因子對應的數便可。spa
#include<bits/stdc++.h> using namespace std; #define ll long long #define inf 1000000010 #define N 100010 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,a[N]; bool isprime(int x) { for (int i=2;i*i<=x;i++) if (x%i==0) return 0; return 1; } signed main() { n=read(); int mx=0; for (int i=2;i<=n;i++) if (isprime(i)) a[i]=++mx; else { for (int j=2;j*j<=i;j++) if (i%j==0) {a[i]=a[j];break;} } for (int i=2;i<=n;i++) printf("%d ",a[i]); return 0; //NOTICE LONG LONG!!!!! }
D:若是m>=2n即沒有限制,使序列前綴和依次爲0,1,2……便可。不然這些數中有一半不能選擇,作法相似。htm
#include<bits/stdc++.h> using namespace std; #define ll long long #define inf 1000000010 #define N 18 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,m,a[1<<N],cnt; signed main() { n=read(),m=read(); if (m>=(1<<n)) { cout<<(1<<n)-1<<endl; for (int i=1;i<(1<<n);i++) printf("%d ",i^(i-1)); } else { for (int i=1;i<(1<<n);i++) if (i<(i^m)) a[++cnt]=i; cout<<(1<<n-1)-1<<endl; for (int i=1;i<=(1<<n-1)-1;i++) printf("%d ",a[i]^a[i-1]); } return 0; //NOTICE LONG LONG!!!!! }
E:容易發現前綴gcd最大變化次數就是<=n的數所擁有的最大質因子個數。顯然形如2k的數知足條件。同時3*2k-1也可能知足條件。對於前者, 設c[i]=[n/2i]-[n/2i+1],也即恰有i個2的數的個數,那麼合法排列方案數的計算相似於CTS2019隨機立方體https://www.cnblogs.com/Gloid/p/10936699.html中的一個子問題,再也不贅述。後者的話考慮一下3這個因子在還剩多少個2時被刪去,相似地計算。blog
#include<bits/stdc++.h> using namespace std; #define ll long long #define inf 1000000010 #define N 1000010 #define P 1000000007 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,ans,a[30],fac[N],inv[N],b[2][30]; int C(int n,int m){if (m>n) return 0;return 1ll*fac[n]*inv[m]%P*inv[n-m]%P;} void inc(int &x,int y){x+=y;if (x>=P) x-=P;} signed main() { n=read(); fac[0]=1;for (int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%P; inv[0]=inv[1]=1;for (int i=2;i<=n;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P; for (int i=2;i<=n;i++) inv[i]=1ll*inv[i]*inv[i-1]%P; int m=0,tmp=n;while (tmp) m++,tmp>>=1; m--; if ((3<<m-1)<=n) { for (int i=1;i<=n;i++) { int x=0,y=i; while (y%2==0) y>>=1,x++; if (i%3==0) b[1][min(x,m-1)]++; else b[0][min(x,m-1)]++; } for (int i=m-1;i>=0;i--) { int s=1,u=n; for (int j=m-1;j>=i;j--) { s=1ll*s*C(u-1,b[1][j]-1)%P*fac[b[1][j]]%P; u-=b[1][j]; } int tot=0;for (int j=m-1;j>=i;j--) tot+=b[0][j]; s=1ll*s*C(u-1,tot-1)%P*fac[tot]%P; u-=tot; for (int j=i-1;j>=0;j--) { s=1ll*s*C(u-1,b[0][j]+b[1][j]-1)%P*fac[b[0][j]+b[1][j]]%P; u-=b[0][j]+b[1][j]; } inc(ans,s); } } memset(a,0,sizeof(a)); for (int i=1;i<=n;i++) { int x=0,y=i; while (y%2==0) y>>=1,x++; a[x]++; } int s=1,u=n; for (int i=m;i>=0;i--) { s=1ll*s*C(u-1,a[i]-1)%P*fac[a[i]]%P; u-=a[i]; } inc(ans,s); cout<<ans; return 0; //NOTICE LONG LONG!!!!! }
F:點分治,問出當前點深度就能夠知道其是否是隱藏點的祖先。若是不是就在該點父親所在子樹中繼續尋找,不然問出到隱藏點路徑上的第二個點到對應子樹中尋找。發現離隱藏點距離爲0時就找到了。排序
#include<bits/stdc++.h> using namespace std; #define ll long long #define N 200010 char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,p[N],t,d,fa[N],deep[N],size[N]; bool flag[N]; struct data{int to,nxt; }edge[N<<1]; void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;} void dfs(int k) { for (int i=p[k];i;i=edge[i].nxt) if (edge[i].to!=fa[k]) { deep[edge[i].to]=deep[k]+1; fa[edge[i].to]=k; dfs(edge[i].to); } } void make(int k,int from) { size[k]=1; for (int i=p[k];i;i=edge[i].nxt) if (edge[i].to!=from&&!flag[edge[i].to]) { make(edge[i].to,k); size[k]+=size[edge[i].to]; } } int findroot(int k,int from,int s) { int mx=0; for (int i=p[k];i;i=edge[i].nxt) if (edge[i].to!=from&&!flag[edge[i].to]&&size[edge[i].to]>size[mx]) mx=edge[i].to; if ((size[mx]<<1)>s) return findroot(mx,k,s); else return k; } int getd(int x){cout<<"d "<<x<<endl;return read();} int gets(int x){cout<<"s "<<x<<endl;return read();} int solve(int k) { make(k,k);flag[k=findroot(k,k,size[k])]=1; int u=getd(k);if (u==0) return k; if (deep[k]+u==d) return solve(gets(k)); else return solve(fa[k]); } int main() { n=read(); for (int i=1;i<n;i++) { int x=read(),y=read(); addedge(x,y),addedge(y,x); } dfs(1); d=getd(1); cout<<"! "<<solve(1); return 0; }
小小小號。result:rank 18 rating +163get