做爲一個網絡框架,最爲核心的就是消息的接受與發送。高效的 reactor
模式一直是衆多網絡框架的首要選擇,本節主要講解 swoole
中的 reactor
模塊。react
UNP 學習筆記——IO 複用linux
Reactor
的數據結構Reactor
的數據結構比較複雜,首先 object
是具體 Reactor
對象的首地址,ptr
是擁有 Reactor
對象的類的指針,event_num
存放現有監控的 fd
個數,max_event_num
存放容許持有的最大事件數目,flag
爲標記位,id
用於存放對應 reactor
的 id
,running
用於標記該 reactor
是否正在運行,通常是建立時會被置爲 1,start
標記着 reactor
是否已經被啓動,通常是進行 wait
監控時被置爲 1,once
標誌着 reactor
是不是僅須要一次性監控,check_timer
標誌着是否要檢查定時任務singal_no
:每次 reactor
因爲 fd
的就緒返回時,reactor
都會檢查這個 singal_no
,若是這個值不爲空,那麼就會調用相應的信號回調函數disable_accept
標誌着是否接受新的鏈接,這個只有主 reactor
中才會設置爲 0,其餘 reactor
線程不須要接受新的鏈接,只須要接受數據便可check_signalfd
標誌着是否須要檢查 signalfd
thread
用於標記當前是使用 reactor
多線程模式仍是多進程模式,通常都會使用多線程模式timeout_msec
用於記錄每次 reactor->wait
的超時max_socket
記錄着 reactor
中最大的鏈接數,與 max_connection
的值一致; socket_list
是 reactor
多線程模式的監聽的 socket
,與 connection_list
保持一致; socket_array
是 reactor
多進程模式中的監聽的 fd
handle
是默認就緒的回調函數,write_handle
是寫就緒的回調函數, error_handle
包含錯誤就緒的回調函數timewheel
、heartbeat_interval
、last_heartbeat_time
是心跳檢測,專門剔除空閒鏈接last_malloc_trim_time
記錄了上次返還給系統的時間,swoole
會按期的經過 malloc_trim
函數返回空閒的內存空間struct _swReactor { void *object; void *ptr; //reserve /** * last signal number */ int singal_no; uint32_t event_num; uint32_t max_event_num; uint32_t check_timer :1; uint32_t running :1; uint32_t start :1; uint32_t once :1; /** * disable accept new connection */ uint32_t disable_accept :1; uint32_t check_signalfd :1; /** * multi-thread reactor, cannot realloc sockets. */ uint32_t thread :1; /** * reactor->wait timeout (millisecond) or -1 */ int32_t timeout_msec; uint16_t id; //Reactor ID uint16_t flag; //flag uint32_t max_socket; #ifdef SW_USE_MALLOC_TRIM time_t last_malloc_trim_time; #endif #ifdef SW_USE_TIMEWHEEL swTimeWheel *timewheel; uint16_t heartbeat_interval; time_t last_heartbeat_time; #endif /** * for thread */ swConnection *socket_list; /** * for process */ swArray *socket_array; swReactor_handle handle[SW_MAX_FDTYPE]; //默認事件 swReactor_handle write_handle[SW_MAX_FDTYPE]; //擴展事件1(通常爲寫事件) swReactor_handle error_handle[SW_MAX_FDTYPE]; //擴展事件2(通常爲錯誤事件,如socket關閉) int (*add)(swReactor *, int fd, int fdtype); int (*set)(swReactor *, int fd, int fdtype); int (*del)(swReactor *, int fd); int (*wait)(swReactor *, struct timeval *); void (*free)(swReactor *); int (*setHandle)(swReactor *, int fdtype, swReactor_handle); swDefer_callback *defer_callback_list; swDefer_callback idle_task; swDefer_callback future_task; void (*onTimeout)(swReactor *); void (*onFinish)(swReactor *); void (*onBegin)(swReactor *); void (*enable_accept)(swReactor *); int (*can_exit)(swReactor *); int (*write)(swReactor *, int, void *, int); int (*close)(swReactor *, int); int (*defer)(swReactor *, swCallback, void *); };
reactor
的建立reactor
的建立主要是調用 swReactorEpoll_create
函數setHandle
函數是爲監聽的 fd
設置回調函數,包括讀就緒、寫就緒、錯誤onFinish
是每次調用 epoll
函數返回後,處理具體邏輯後,最後調用的回調函數onTimeout
是每次調用 epoll
函數超時後的回調函數write
函數是利用 reactor
向 socket
發送數據的接口defer
函數用於添加 defer_callback_list
成員變量,這個成員變量是回調函數列表,epoll
函數超時和 onFinish
都會循環 defer_callback_list
裏面的回調函數socket_array
是監聽的 fd
列表int swReactor_create(swReactor *reactor, int max_event) { int ret; bzero(reactor, sizeof(swReactor)); #ifdef HAVE_EPOLL ret = swReactorEpoll_create(reactor, max_event); reactor->running = 1; reactor->setHandle = swReactor_setHandle; reactor->onFinish = swReactor_onFinish; reactor->onTimeout = swReactor_onTimeout; reactor->write = swReactor_write; reactor->defer = swReactor_defer; reactor->close = swReactor_close; reactor->socket_array = swArray_new(1024, sizeof(swConnection)); if (!reactor->socket_array) { swWarn("create socket array failed."); return SW_ERR; } return ret; }
reactor
的函數reactor
設置文件就緒回調函數 swReactor_setHandle
reactor
中設置的 fd
由兩部分構成,一種是 swFd_type
,標識着文件描述符的類型,一種是 swEvent_type
標識着文件描述符感興趣的讀寫事件enum swFd_type { SW_FD_TCP = 0, //tcp socket SW_FD_LISTEN = 1, //server socket SW_FD_CLOSE = 2, //socket closed SW_FD_ERROR = 3, //socket error SW_FD_UDP = 4, //udp socket SW_FD_PIPE = 5, //pipe SW_FD_STREAM = 6, //stream socket SW_FD_WRITE = 7, //fd can write SW_FD_TIMER = 8, //timer fd SW_FD_AIO = 9, //linux native aio SW_FD_SIGNAL = 11, //signalfd SW_FD_DNS_RESOLVER = 12, //dns resolver SW_FD_INOTIFY = 13, //server socket SW_FD_USER = 15, //SW_FD_USER or SW_FD_USER+n: for custom event SW_FD_STREAM_CLIENT = 16, //swClient stream SW_FD_DGRAM_CLIENT = 17, //swClient dgram }; enum swEvent_type { SW_EVENT_DEAULT = 256, SW_EVENT_READ = 1u << 9, SW_EVENT_WRITE = 1u << 10, SW_EVENT_ERROR = 1u << 11, SW_EVENT_ONCE = 1u << 12, };
swReactor_fdtype
用於從文件描述符中提取 swFd_type
,也就是文件描述符的類型:static sw_inline int swReactor_fdtype(int fdtype) { return fdtype & (~SW_EVENT_READ) & (~SW_EVENT_WRITE) & (~SW_EVENT_ERROR); }
swReactor_event_read
、swReactor_event_write
、swReactor_event_error
這三個函數與 swFd_type
正相反,是從文件描述符中提取讀寫事件static sw_inline int swReactor_event_read(int fdtype) { return (fdtype < SW_EVENT_DEAULT) || (fdtype & SW_EVENT_READ); } static sw_inline int swReactor_event_write(int fdtype) { return fdtype & SW_EVENT_WRITE; } static sw_inline int swReactor_event_error(int fdtype) { return fdtype & SW_EVENT_ERROR; }
swReactor_setHandle
用於爲文件描述符 _fdtype
設定讀就緒、寫就緒的回調函數int swReactor_setHandle(swReactor *reactor, int _fdtype, swReactor_handle handle) { int fdtype = swReactor_fdtype(_fdtype); if (fdtype >= SW_MAX_FDTYPE) { swWarn("fdtype > SW_MAX_FDTYPE[%d]", SW_MAX_FDTYPE); return SW_ERR; } if (swReactor_event_read(_fdtype)) { reactor->handle[fdtype] = handle; } else if (swReactor_event_write(_fdtype)) { reactor->write_handle[fdtype] = handle; } else if (swReactor_event_error(_fdtype)) { reactor->error_handle[fdtype] = handle; } else { swWarn("unknow fdtype"); return SW_ERR; } return SW_OK; }
reactor
添加 defer
函數defer
函數會在每次事件循環結束或超時的時候調用swReactor_defer
函數會爲 defer_callback_list
添加新的回調函數static int swReactor_defer(swReactor *reactor, swCallback callback, void *data) { swDefer_callback *cb = sw_malloc(sizeof(swDefer_callback)); if (!cb) { swWarn("malloc(%ld) failed.", sizeof(swDefer_callback)); return SW_ERR; } cb->callback = callback; cb->data = data; LL_APPEND(reactor->defer_callback_list, cb); return SW_OK; }
reactor
超時回調函數epoll
在設置的時間內沒有返回的話,也會自動返回,這個時候就會調用超時回調函數:laravel
static void swReactor_onTimeout(swReactor *reactor) { swReactor_onTimeout_and_Finish(reactor); if (reactor->disable_accept) { reactor->enable_accept(reactor); reactor->disable_accept = 0; } }
swReactor_onTimeout_and_Finish
函數用於在超時、finish
等狀況下調用swTimer_select
執行回調函數defer_callback_list
的多個回調函數, 該 list
是事先定義好的須要 defer
執行的函數idle_task
是 EventLoop
中使用的每一輪事件循環結束時調用的函數。reactor
當前在 work
進程,那麼就要調用 swWorker_try_to_exit
函數來判斷 event_num
是否是爲 0,若是爲 0 ,那麼就置 running
爲0,中止等待事件就緒SwooleG.serv
爲空,swReactor_empty
函數用於判斷當前 reactor
是否還有事件在監聽,若是沒有,那麼就會設置 running
爲 0malloc_trim
釋放空閒的內存,若是距離上次釋放內存的時間超過了 SW_MALLOC_TRIM_INTERVAL
,就更新 last_malloc_trim_time
並調用 malloc_trim
static void swReactor_onTimeout_and_Finish(swReactor *reactor) { //check timer if (reactor->check_timer) { swTimer_select(&SwooleG.timer); } //defer callback swDefer_callback *cb, *tmp; swDefer_callback *defer_callback_list = reactor->defer_callback_list; reactor->defer_callback_list = NULL; LL_FOREACH(defer_callback_list, cb) { cb->callback(cb->data); } LL_FOREACH_SAFE(defer_callback_list, cb, tmp) { sw_free(cb); } //callback at the end if (reactor->idle_task.callback) { reactor->idle_task.callback(reactor->idle_task.data); } #ifdef SW_COROUTINE //coro timeout if (!swIsMaster()) { coro_handle_timeout(); } #endif //server worker swWorker *worker = SwooleWG.worker; if (worker != NULL) { if (SwooleWG.wait_exit == 1) { swWorker_try_to_exit(); } } //not server, the event loop is empty if (SwooleG.serv == NULL && swReactor_empty(reactor)) { reactor->running = 0; } #ifdef SW_USE_MALLOC_TRIM if (SwooleG.serv && reactor->last_malloc_trim_time < SwooleG.serv->gs->now - SW_MALLOC_TRIM_INTERVAL) { malloc_trim(SW_MALLOC_TRIM_PAD); reactor->last_malloc_trim_time = SwooleG.serv->gs->now; } #endif }
swReactor_empty
用來判斷當前的 reactor
是否還有事件須要監聽timer
裏面還有等待的任務,那麼就能夠返回 falseevent_num
若是爲 0,能夠返回 true,結束事件循環can_exit
來判斷是否能夠退出事件循環int swReactor_empty(swReactor *reactor) { //timer if (SwooleG.timer.num > 0) { return SW_FALSE; } int empty = SW_FALSE; //thread pool if (SwooleAIO.init && reactor->event_num == 1 && SwooleAIO.task_num == 0) { empty = SW_TRUE; } //no event else if (reactor->event_num == 0) { empty = SW_TRUE; } //coroutine if (empty && reactor->can_exit && reactor->can_exit(reactor)) { empty = SW_TRUE; } return empty; }
reactor
事件循環結束函數onFinish
函數swReactor_onTimeout_and_Finish
,在此以前還會檢查在事件循環過程當中是否有信號觸發static void swReactor_onFinish(swReactor *reactor) { //check signal if (reactor->singal_no) { swSignal_callback(reactor->singal_no); reactor->singal_no = 0; } swReactor_onTimeout_and_Finish(reactor); }
reactor
事件循環關閉函數socket
關閉的時候,會調用 close
函數,對應的回調函數就是 swReactor_close
swConnection
內部申請的內存,並調用 close
函數關閉鏈接int swReactor_close(swReactor *reactor, int fd) { swConnection *socket = swReactor_get(reactor, fd); if (socket->out_buffer) { swBuffer_free(socket->out_buffer); } if (socket->in_buffer) { swBuffer_free(socket->in_buffer); } if (socket->websocket_buffer) { swString_free(socket->websocket_buffer); } bzero(socket, sizeof(swConnection)); socket->removed = 1; swTraceLog(SW_TRACE_CLOSE, "fd=%d.", fd); return close(fd); }
swReactor_get
用於從 reactor
中根據文件描述符獲取對應 swConnection
對象的場景,因爲 swoole
通常都會採用 reactor
多線程模式,所以基本只會執行 return &reactor->socket_list[fd];
這一句。socket_list
這個列表與 connection_list
保持一致,是事先申請的大小爲 max_connection
的類型是 swConnection
的數組socket_list
中的數據有一部分是已經創建鏈接的 swConnection
的對象,有一部分僅僅是空的 swConnection
,這個時候 swConnection->fd
爲 0static sw_inline swConnection* swReactor_get(swReactor *reactor, int fd) { if (reactor->thread) { return &reactor->socket_list[fd]; } swConnection *socket = (swConnection*) swArray_alloc(reactor->socket_array, fd); if (socket == NULL) { return NULL; } if (!socket->active) { socket->fd = fd; } return socket; }
reactor
的數據寫入socket
寫入數據,並不能簡單的直接調用 send
函數,由於這個函數可能被信號打斷(EINTR)、可能暫時不可用(EAGAIN)、可能只寫入了部分數據,也有可能寫入成功。所以,reactor
定義了一個函數專門處理寫數據這一邏輯swReactor_get
取出對應的 swConnection
對象fd
是 0,說明這個 fd
文件描述符事先並無在 reactor
裏面進行監聽若是這個 socket
的 out_buffer
爲空,那麼就先嚐試利用 swConnection_send
函數調用 send
函數,觀察是否能夠直接把全部數據發送成功web
EINTR
,那麼說明被信號打斷了,從新發送便可EAGAIN
,那麼說明此時 socket
暫時不可用,此時須要將 fd
文件描述符的寫就緒狀態添加到 reactor
中,而後將數據拷貝到 out_buffer
中去n
,說明只寫入了部分,此時須要把沒有寫入的部分拷貝到 out_buffer
中去out_buffer
不爲空,那麼說明此時 socket
不可寫,那麼就要將數據拷貝到 out_buffer
中去,等着 reactor
監控到寫就緒以後,把 out_buffer
發送出去。out_buffer
存儲空間不足,那麼就要 swYield
讓進程休眠一段時間,等待 fd
的寫就緒狀態int swReactor_write(swReactor *reactor, int fd, void *buf, int n) { int ret; swConnection *socket = swReactor_get(reactor, fd); swBuffer *buffer = socket->out_buffer; if (socket->fd == 0) { socket->fd = fd; } if (socket->buffer_size == 0) { socket->buffer_size = SwooleG.socket_buffer_size; } if (socket->nonblock == 0) { swoole_fcntl_set_option(fd, 1, -1); socket->nonblock = 1; } if (n > socket->buffer_size) { swoole_error_log(SW_LOG_WARNING, SW_ERROR_PACKAGE_LENGTH_TOO_LARGE, "data is too large, cannot exceed buffer size."); return SW_ERR; } if (swBuffer_empty(buffer)) { if (socket->ssl_send) { goto do_buffer; } do_send: ret = swConnection_send(socket, buf, n, 0); if (ret > 0) { if (n == ret) { return ret; } else { buf += ret; n -= ret; goto do_buffer; } } #ifdef HAVE_KQUEUE else if (errno == EAGAIN || errno == ENOBUFS) #else else if (errno == EAGAIN) #endif { do_buffer: if (!socket->out_buffer) { buffer = swBuffer_new(sizeof(swEventData)); if (!buffer) { swWarn("create worker buffer failed."); return SW_ERR; } socket->out_buffer = buffer; } socket->events |= SW_EVENT_WRITE; if (socket->events & SW_EVENT_READ) { if (reactor->set(reactor, fd, socket->fdtype | socket->events) < 0) { swSysError("reactor->set(%d, SW_EVENT_WRITE) failed.", fd); } } else { if (reactor->add(reactor, fd, socket->fdtype | SW_EVENT_WRITE) < 0) { swSysError("reactor->add(%d, SW_EVENT_WRITE) failed.", fd); } } goto append_buffer; } else if (errno == EINTR) { goto do_send; } else { SwooleG.error = errno; return SW_ERR; } } else { append_buffer: if (buffer->length > socket->buffer_size) { if (socket->dontwait) { SwooleG.error = SW_ERROR_OUTPUT_BUFFER_OVERFLOW; return SW_ERR; } else { swoole_error_log(SW_LOG_WARNING, SW_ERROR_OUTPUT_BUFFER_OVERFLOW, "socket#%d output buffer overflow.", fd); swYield(); swSocket_wait(fd, SW_SOCKET_OVERFLOW_WAIT, SW_EVENT_WRITE); } } if (swBuffer_append(buffer, buf, n) < 0) { return SW_ERR; } } return SW_OK; }