HDFS寫文件過程分析html
HDFS是一個分佈式文件系統,在HDFS上寫文件的過程與咱們平時使用的單機文件系統很是不一樣,從宏觀上來看,在HDFS文件系統上建立並寫一個文件,流程以下圖(來自《Hadoop:The Definitive Guide》一書)所示:node
具體過程描述以下:git
更詳細的流程:github
機架感知(副本節點選擇):算法
下面代碼使用Hadoop的API來實現向HDFS的文件寫入數據,一樣也包括建立一個文件和寫數據兩個主要過程,代碼以下所示:緩存
static String[] contents = new String[] { "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb", "cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc", "dddddddddddddddddddddddddddddddd", "eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee", }; public static void main(String[] args) { String file = "hdfs://h1:8020/data/test/test.log"; Path path = new Path(file); Configuration conf = new Configuration(); FileSystem fs = null; FSDataOutputStream output = null; try { fs = path.getFileSystem(conf); output = fs.create(path); // 建立文件 for(String line : contents) { // 寫入數據 output.write(line.getBytes("UTF-8")); output.flush(); } } catch (IOException e) { e.printStackTrace(); } finally { try { output.close(); } catch (IOException e) { e.printStackTrace(); } } }
結合上面的示例代碼,咱們先從fs.create(path);開始,能夠看到FileSystem的實現DistributedFileSystem中給出了最終返回FSDataOutputStream對象的抽象邏輯,代碼以下所示:安全
public FSDataOutputStream create(Path f, FsPermission permission, boolean overwrite, int bufferSize, short replication, long blockSize, Progressable progress) throws IOException { statistics.incrementWriteOps(1); return new FSDataOutputStream (dfs.create(getPathName(f), permission, overwrite, true, replication, blockSize, progress, bufferSize), statistics); }
上面,DFSClient dfs的create方法中建立了一個OutputStream對象,在DFSClient的create方法:服務器
public OutputStream create(String src, FsPermission permission, boolean overwrite, boolean createParent, short replication, long blockSize, Progressable progress, int buffersize ) throws IOException { ... ... }
final DFSOutputStream result = new DFSOutputStream(src, masked, overwrite, createParent, replication, blockSize, progress, buffersize, conf.getInt("io.bytes.per.checksum", 512));
下面,咱們從DFSOutputStream類開始,說明其內部實現原理。數據結構
DFSOutputStream(String src, FsPermission masked, boolean overwrite, boolean createParent, short replication, long blockSize, Progressable progress, int buffersize, int bytesPerChecksum) throws IOException { this(src, blockSize, progress, bytesPerChecksum, replication); computePacketChunkSize(writePacketSize, bytesPerChecksum); // 默認 writePacketSize=64*1024(即64K),bytesPerChecksum=512(沒512個字節計算一個校驗和), try { if (createParent) { // createParent爲true表示,若是待建立的文件的父級目錄不存在,則自動建立 namenode.create(src, masked, clientName, overwrite, replication, blockSize); } else { namenode.create(src, masked, clientName, overwrite, false, replication, blockSize); } } catch(RemoteException re) { throw re.unwrapRemoteException(AccessControlException.class, FileAlreadyExistsException.class, FileNotFoundException.class, NSQuotaExceededException.class, DSQuotaExceededException.class); } streamer.start(); // 啓動一個DataStreamer線程,用來將寫入的字節流打包成packet,而後發送到對應的Datanode節點上 } 上面computePacketChunkSize方法計算了一個packet的相關參數,咱們結合代碼來查看,以下所示: int chunkSize = csize + checksum.getChecksumSize(); int n = DataNode.PKT_HEADER_LEN + SIZE_OF_INTEGER; chunksPerPacket = Math.max((psize - n + chunkSize-1)/chunkSize, 1); packetSize = n + chunkSize*chunksPerPacket;
咱們用默認的參數值替換上面的參數,獲得:併發
int chunkSize = 512 + 4; int n = 21 + 4; chunksPerPacket = Math.max((64*1024 - 25 + 516-1)/516, 1); // 127 packetSize = 25 + 516*127;
上面對應的參數,說明以下表所示:
參數名稱 | 參數值 | 參數含義 |
chunkSize | 512+4=516 | 每一個chunk的字節數(數據+校驗和) |
csize | 512 | 每一個chunk數據的字節數 |
psize | 64*1024 | 每一個packet的最大字節數(不包含header) |
DataNode.PKT_HEADER_LEN | 21 | 每一個packet的header的字節數 |
chunksPerPacket | 127 | 組成每一個packet的chunk的個數 |
packetSize | 25+516*127=65557 | 每一個packet的字節數(一個header+一組chunk) |
在計算好一個packet相關的參數之後,調用create方法與Namenode進行RPC請求,請求建立文件:
if (createParent) { // createParent爲true表示,若是待建立的文件的父級目錄不存在,則自動建立 namenode.create(src, masked, clientName, overwrite, replication, blockSize); } else { namenode.create(src, masked, clientName, overwrite, false, replication, blockSize); }
遠程調用上面方法,會在FSNamesystem中建立對應的文件路徑,並初始化與該建立的文件相關的一些信息,如租約(向Datanode節點寫數據的憑據)。文件在FSNamesystem中建立成功,就要初始化並啓動一個DataStreamer線程,用來向Datanode寫數據,後面咱們詳細說明具體處理邏輯。
Packet結構與定義
字段名稱 | 字段類型 | 字段長度 | 字段含義 |
pktLen | int | 4 | 4 + dataLen + checksumLen |
offsetInBlock | long | 8 | Packet在Block中偏移量 |
seqNo | long | 8 | Packet序列號,在同一個Block惟一 |
lastPacketInBlock | boolean | 1 | 是不是一個Block的最後一個Packet |
dataLen | int | 4 | dataPos – dataStart,不包含Header和Checksum的長度 |
ByteBuffer buffer; // only one of buf and buffer is non-null byte[] buf; long seqno; // sequencenumber of buffer in block long offsetInBlock; // 該packet在block中的偏移量 boolean lastPacketInBlock; // is this the last packet in block? int numChunks; // number of chunks currently in packet int maxChunks; // 一個packet中包含的chunk的個數 int dataStart; int dataPos; int checksumStart; int checksumPos;
Packet類有一個默認的沒有參數的構造方法,它是用來作heatbeat的,以下所示:
Packet() { this.lastPacketInBlock = false; this.numChunks = 0; this.offsetInBlock = 0; this.seqno = HEART_BEAT_SEQNO; // 值爲-1 buffer = null; int packetSize = DataNode.PKT_HEADER_LEN + SIZE_OF_INTEGER; // 21+4=25 buf = new byte[packetSize]; checksumStart = dataStart = packetSize; checksumPos = checksumStart; dataPos = dataStart; maxChunks = 0; }
經過代碼能夠看到,一個heatbeat的內容,實際上只有一個長度爲25字節的header數據。經過this.seqno = HEART_BEAT_SEQNO;的值能夠判斷一個packet是不是heatbeat包,若是seqno爲-1表示這是一個heatbeat包。
Client發送Packet數據
字段名稱 | 字段類型 | 字段長度 | 字段含義 |
Transfer Version | short | 2 | Client與DataNode之間數據傳輸版本號,由常量DataTransferProtocol.DATA_TRANSFER_VERSION定義,值爲17 |
OP | int | 4 | 操做類型,由常量DataTransferProtocol.OP_WRITE_BLOCK定義,值爲80 |
blkId | long | 8 | Block的ID值,由NameNode分配 |
GS | long | 8 | 時間戳(Generation Stamp),NameNode分配blkId的時候生成的時間戳 |
DNCnt | int | 4 | DataNode複製Pipeline中DataNode節點的數量 |
Recovery Flag | boolean | 1 | Recover標誌 |
Client | Text | Client主機的名稱,在使用Text進行序列化的時候,實際包含長度len與主機名稱字符串ClientHost | |
srcNode | boolean | 1 | 是否發送src node的信息,默認值爲false,不發送src node的信息 |
nonSrcDNCnt | int | 4 | 由Client寫的該Header數據,該數不包含Pipeline中第一個節點(即爲DNCnt-1) |
DN2 | DatanodeInfo | DataNode信息,包括StorageID、InfoPort、IpcPort、capacity、DfsUsed、remaining、LastUpdate、XceiverCount、Location、HostName、AdminState | |
DN3 | DatanodeInfo | DataNode信息,包括StorageID、InfoPort、IpcPort、capacity、DfsUsed、remaining、LastUpdate、XceiverCount、Location、HostName、AdminState | |
Access Token | Token | 訪問令牌信息,包括IdentifierLength、Identifier、PwdLength、Pwd、KindLength、Kind、ServiceLength、Service | |
CheckSum Header | DataChecksum | 1+4 | 校驗和Header信息,包括type、bytesPerChecksum |
Header數據包發送成功,Client會收到一個成功響應碼(DataTransferProtocol.OP_STATUS_SUCCESS = 0),接着將Packet數據發送到Pipeline中第一個DataNode上,以下所示:
Packet one = null; one = dataQueue.getFirst(); // regular data packet ByteBuffer buf = one.getBuffer(); // write out data to remote datanode blockStream.write(buf.array(), buf.position(), buf.remaining()); if (one.lastPacketInBlock) { // 若是是Block中的最後一個Packet,還要寫入一個0標識該Block已經寫入完成 blockStream.writeInt(0); // indicate end-of-block }
if (!success) { LOG.info("Abandoning " + block); namenode.abandonBlock(block, src, clientName); if (errorIndex < nodes.length) { LOG.info("Excluding datanode " + nodes[errorIndex]); excludedNodes.add(nodes[errorIndex]); } // Connection failed. Let's wait a little bit and retry retry = true; }
Block block = new Block(in.readLong(), dataXceiverServer.estimateBlockSize, in.readLong()); LOG.info("Receiving " + block + " src: " + remoteAddress + " dest: " + localAddress); int pipelineSize = in.readInt(); // num of datanodes in entire pipeline boolean isRecovery = in.readBoolean(); // is this part of recovery? String client = Text.readString(in); // working on behalf of this client boolean hasSrcDataNode = in.readBoolean(); // is src node info present if (hasSrcDataNode) { srcDataNode = new DatanodeInfo(); srcDataNode.readFields(in); } int numTargets = in.readInt(); if (numTargets < 0) { throw new IOException("Mislabelled incoming datastream."); } DatanodeInfo targets[] = new DatanodeInfo[numTargets]; for (int i = 0; i < targets.length; i++) { DatanodeInfo tmp = new DatanodeInfo(); tmp.readFields(in); targets[i] = tmp; } Token<BlockTokenIdentifier> accessToken = new Token<BlockTokenIdentifier>(); accessToken.readFields(in);