Service Mesh - Istio實戰篇(下)

上篇:node


收集指標並監控應用

在可觀察性裏,指標是最可以從多方面去反映系統運行情況的。由於指標有各類各樣,咱們能夠經過多維數據分析的方式來對系統的各個維度進行一個測量和監控。git

Istio 默認是經過自帶的 Promethuse 和 Grafana 組件來完成指標的收集和展現,可是監控系統這樣的基礎工具,一般在每一個公司的生產環境上都是必備的,因此若是使用 Istio 自帶的組件就重複了。github

所以把現有的監控系統和 Istio 整合在一塊兒是最好的解決方案。因此本小節就演示下用現有的監控系統和 Istio 進行一個指標收集方面的整合。web

Istio 的指標接口

首先,咱們須要瞭解 Istio 是怎麼把它的指標暴露出來的。它主要提供瞭如下兩個指標接口:docker

  • /metrics:提供 Istio 自身運行情況的指標信息
  • /stats/prometheus:Envoy 提供的接口,可獲取網絡流量相關的指標
    Service Mesh - Istio實戰篇(下)

咱們能夠請求 /stats/prometheus 接口查看它提供的指標數據:json

$ kubectl exec -it -n demo ${sleep_pod_name} -c sleep -- curl http://httpbin.demo:15090/stats/prometheus

istiod 服務的 /metrics 接口暴露了控制平面的一些指標,咱們能夠經過以下方式獲取到:vim

$ kubectl exec -it -n demo ${sleep_pod_name} -c sleep -- curl http://istiod.istio-system:15014/metrics

Prometheus 配置方式

Service Mesh - Istio實戰篇(下)

  • 靜態配置侷限性比較大,不能很好的適應變化,因此通常都是使用動態配置的方式

支撐動態配置的基礎是 Prometheus 的服務發現機制:後端

  • 服務發現機制能夠保證 Prometheus 可以經過服務暴露出來的接口來找到這些對應指標提供的接口
  • kubernetes_sd_config.role 配置項定義了對哪些目標進行指標收集
    • node:集羣節點
    • service:服務,經常使用於黑盒監控
    • pod:以pod中容器爲目標
    • endpoints:端點
    • ingress:入口網關
  • relabel_configs 配置項定義了過濾機制,用於對暴露出來的接口進行過濾

實戰

咱們先來搭建一個監控系統,而後與 Istio 進行整合。首先部署 Prometheus ,具體的配置清單內容以下:api

apiVersion: apps/v1
kind: Deployment
metadata:
  name: prometheus
  namespace: monitoring
  labels:
    app: prometheus
spec:
  selector:
    matchLabels:
      app: prometheus
  template:
    metadata:
      labels:
        app: prometheus
    spec:
      serviceAccount: appmesh-prometheus
      serviceAccountName: appmesh-prometheus
      containers:
      - image: prom/prometheus:latest
        name: prometheus
        command:
        - "/bin/prometheus"
        args:
        - "--config.file=/etc/prometheus/prometheus.yml"
        - "--storage.tsdb.path=/prometheus"
        - "--storage.tsdb.retention=24h"
        - "--web.enable-admin-api"  
        - "--web.enable-lifecycle"  
        ports:
        - containerPort: 9090
          protocol: TCP
          name: http
        volumeMounts:
        - mountPath: /etc/prometheus
          name: config-volume
        - mountPath: /prometheus/data
          name: data-volume
        resources:
          requests:
            cpu: 100m
            memory: 512Mi
          limits:
            cpu: 100m
            memory: 512Mi
      securityContext:
        runAsUser: 0
      volumes:
      - configMap:
          name: prometheus-config
        name: config-volume
      - emptyDir: {}
        name: data-volume
---
apiVersion: v1
kind: Service
metadata:
  name: prometheus
  namespace: monitoring
  labels:
    app: prometheus
spec:
  selector:
    app: prometheus
  type: NodePort
  ports:
    - name: web
      port: 9090
      targetPort: http
---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: appmesh-prometheus
  namespace: monitoring
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  namespace: monitoring
  name: appmesh-prometheus
rules:
  - apiGroups:
      - ""
    resources:
      - nodes
      - nodes/proxy
      - nodes/metrics
      - services
      - endpoints
      - pods
      - ingresses
      - configmaps
    verbs:
      - get
      - list
      - watch
  - apiGroups:
      - "extensions"
      - "networking.k8s.io"
    resources:
      - ingresses/status
      - ingresses
    verbs:
      - get
      - list
      - watch
  - nonResourceURLs:
      - "/metrics"
    verbs:
      - get
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: appmesh-prometheus
subjects:
  - kind: ServiceAccount
    name: appmesh-prometheus
    namespace: monitoring
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: appmesh-prometheus

建立 Prometheus 的 ConfigMap:瀏覽器

apiVersion: v1
kind: ConfigMap
metadata:
  name: prometheus-config
  namespace: monitoring
data:
  prometheus.yml: |
    global:
      scrape_interval: 15s
      scrape_timeout: 15s
    scrape_configs:
    - job_name: 'prometheus'
      static_configs:
      - targets: ['localhost:9090']

而後部署 Grafana ,配置清單內容以下:

apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: grafana
  name: grafana
  namespace: monitoring
spec:
  replicas: 1
  selector:
    matchLabels:
      app: grafana
  template:
    metadata:
      labels:
        app: grafana
    spec:
      containers:
      - name: grafana
        image: grafana/grafana:latest
        imagePullPolicy: IfNotPresent
        ports:
        - containerPort: 3000
          name: grafana
        env:
        - name: GRAFANA_PORT
          value: "3000"
        - name: GF_AUTH_BASIC_ENABLED
          value: "false"
        - name: GF_AUTH_ANONYMOUS_ENABLED
          value: "true"
        - name: GF_AUTH_ANONYMOUS_ORG_ROLE
          value: Admin
        resources:
          limits:
            cpu: 100m
            memory: 256Mi
          requests:
            cpu: 100m
            memory: 256Mi
        volumeMounts:
          - mountPath: /var/lib/grafana
            name: grafana-storage
      volumes:
        - name: grafana-storage
          emptyDir: {}
---
apiVersion: v1
kind: Service
metadata:
  name: grafana
  namespace: monitoring
  labels:
    app: grafana
spec:
  selector:
    app: grafana
  type: NodePort
  ports:
    - name: http
      port: 3000
      targetPort: 3000
      nodePort: 32000
---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: grafana
  namespace: monitoring

確認都正常啓動了:

[root@m1 ~]# kubectl get all -n monitoring 
NAME                             READY   STATUS    RESTARTS   AGE
pod/grafana-86f5dc96d-6hsmz      1/1     Running   0          20m
pod/prometheus-9dd6bd8bb-wcdrw   1/1     Running   0          2m30s

NAME                 TYPE       CLUSTER-IP       EXTERNAL-IP   PORT(S)          AGE
service/grafana      NodePort   10.101.215.111   <none>        3000:32000/TCP   20m
service/prometheus   NodePort   10.101.113.122   <none>        9090:31053/TCP   13m

NAME                         READY   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/grafana      1/1     1            1           20m
deployment.apps/prometheus   1/1     1            1           13m

NAME                                   DESIRED   CURRENT   READY   AGE
replicaset.apps/grafana-86f5dc96d      1         1         1       20m
replicaset.apps/prometheus-9dd6bd8bb   1         1         1       13m
[root@m1 ~]#

查看 prometheus 和 grafana 調度在哪臺 work 節點上:

[root@m1 ~]# kubectl get po -l app=grafana -n monitoring -o jsonpath='{.items[0].status.hostIP}'
192.168.243.139
[root@m1 ~]# kubectl get po -l app=prometheus -n monitoring -o jsonpath='{.items[0].status.hostIP}'
192.168.243.139

使用瀏覽器訪問 prometheus,並查看其配置內容是否符合預期,便是否能與 ConfigMap 的內容對應上:
Service Mesh - Istio實戰篇(下)

從上圖能夠看到目前 prometheus 是靜態配置,接下來咱們須要將其改成動態配置,修改其 ConfigMap 內容以下:

apiVersion: v1
kind: ConfigMap
metadata:
  name: prometheus-config
  namespace: monitoring
data:
  prometheus.yml: |-
    global:
      scrape_interval: 15s
      scrape_timeout: 15s
    scrape_configs:
    - job_name: 'prometheus'
      static_configs:
      - targets: ['localhost:9090']

    # 如下是整合Istio的配置
    - job_name: envoy-stats
      honor_timestamps: true
      metrics_path: /stats/prometheus
      scheme: http
      kubernetes_sd_configs:
      - role: pod
      relabel_configs:
      - source_labels: [__meta_kubernetes_pod_container_port_name]
        separator: ;
        regex: .*-envoy-prom
        replacement: $1
        action: keep
      - source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
        separator: ;
        regex: ([^:]+)(?::\d+)?;(\d+)
        target_label: __address__
        replacement: $1:15090
        action: replace
      - separator: ;
        regex: __meta_kubernetes_pod_label_(.+)
        replacement: $1
        action: labeldrop
      - source_labels: [__meta_kubernetes_namespace]
        separator: ;
        regex: (.*)
        target_label: namespace
        replacement: $1
        action: replace
      - source_labels: [__meta_kubernetes_pod_name]
        separator: ;
        regex: (.*)
        target_label: pod_name
        replacement: $1
        action: replace
  • Tips:這裏 ConfigMap 配置內容是從 Istio 官方提供的 Prometheus 配置文件拷貝的,每一個版本可能配置會不同。路徑爲:$ISTIO_HOME/samples/addons/prometheus.yaml

而後經過 patch 命令重建一下 prometheus :

[root@m1 ~]# kubectl patch deployment prometheus -n monitoring -p "{\"spec\":{\"template\":{\"metadata\":{\"labels\":{\"date\":\"`date +'%s'`\"}}}}}"
deployment.apps/prometheus patched
[root@m1 ~]#

查看配置是否已生效:
Service Mesh - Istio實戰篇(下)

此時在 prometheus 上就能夠查詢到 Istio 的指標了:
Service Mesh - Istio實戰篇(下)

Grafana 方面則只須要將 Istio 內置的 Dashboard 導出,而後再導入到另外一個 Grafana 便可,比較簡單就不演示了。


集成 ELK Stack 日誌套件

在分佈式系統中,應用產生的日誌會分佈在各個節點上,很是不利於查看和管理。因此通常都會採用集中式日誌架構,把日誌數據彙總到一個日誌平臺進行統一的管理,而日誌平臺中最廣爲人知的就是 ELK Stack 了。

集中式日誌架構

Service Mesh - Istio實戰篇(下)

主要功能:

  • 收集
  • 處理
  • 展現

ELK Stack 日誌架構

Service Mesh - Istio實戰篇(下)

  • ElasticSearch:負責數據存儲及搜索
  • Logstash:負責數據收集管道,提供過濾、預處理功能
  • Kibana:用於對數據進行圖表展現
  • LibBeats:輕量化的數據收集器

ELK 部署形態

Service Mesh - Istio實戰篇(下)

實戰

接下來咱們安裝 ELK 套件,去收集 Istio Envoy的log數據。首先在集羣中建立一個命名空間:

[root@m1 ~]# kubectl create ns elk
namespace/elk created
[root@m1 ~]#

而後使用以下配置清單,部署Elastic Search和Kibana:

kind: List
apiVersion: v1
items:
- apiVersion: apps/v1
  kind: Deployment
  metadata:
    name: kibana
  spec:
    selector:
      matchLabels:
        app: kibana
    replicas: 1
    template:
      metadata:
        name: kibana
        labels:
          app: kibana
      spec:
        containers:
        - image: docker.elastic.co/kibana/kibana:6.4.0
          name: kibana
          env:
          - name: ELASTICSEARCH_URL
            value: "http://elasticsearch:9200"
          ports:
          - name: http
            containerPort: 5601
- apiVersion: v1
  kind: Service
  metadata:
    name: kibana
  spec:
    type: NodePort
    ports:
    - name: http
      port: 5601
      targetPort: 5601 
      nodePort: 32001
    selector:
      app: kibana            
- apiVersion: apps/v1
  kind: Deployment
  metadata:
    name: elasticsearch
  spec:
    selector:
      matchLabels:
        app: elasticsearch
    replicas: 1
    template:
      metadata:
        name: elasticsearch
        labels:
          app: elasticsearch
      spec:
        initContainers:
        - name: init-sysctl
          image: busybox
          command:
          - sysctl
          - -w
          - vm.max_map_count=262144
          securityContext:
            privileged: true
        containers:
        - image: docker.elastic.co/elasticsearch/elasticsearch:6.4.0
          name: elasticsearch
          env:
          - name: network.host
            value: "_site_"
          - name: node.name
            value: "${HOSTNAME}"
          - name: discovery.zen.ping.unicast.hosts
            value: "${ELASTICSEARCH_NODEPORT_SERVICE_HOST}"
          - name: cluster.name
            value: "test-single"
          - name: ES_JAVA_OPTS
            value: "-Xms128m -Xmx128m"
          volumeMounts:
          - name: es-data
            mountPath: /usr/share/elasticsearch/data
        volumes:
          - name: es-data
            emptyDir: {}
- apiVersion: v1
  kind: Service
  metadata: 
    name: elasticsearch-nodeport
  spec:
    type: NodePort
    ports:
    - name: http
      port: 9200
      targetPort: 9200
      nodePort: 32002
    - name: tcp
      port: 9300
      targetPort: 9300
      nodePort: 32003
    selector:
      app: elasticsearch
- apiVersion: v1
  kind: Service
  metadata:
    name: elasticsearch
  spec:
    clusterIP: None
    ports:
    - name: http
      port: 9200
    - name: tcp
      port: 9300
    selector:
      app: elasticsearch

指定命名空間進行部署:

[root@m1 ~]# kubectl apply -f elk/deploy.yaml -n elk 
deployment.apps/kibana created
service/kibana created
deployment.apps/elasticsearch created
service/elasticsearch-nodeport created
service/elasticsearch created
[root@m1 ~]#

以上只是部署了elasticsearch和kibana,但想要對 Envoy 的日誌進行收集,咱們還須要部署Logstash或FileBeats,這裏以FileBeats做爲示例,配置清單內容以下:

kind: List
apiVersion: v1
items:
- apiVersion: v1
  kind: ConfigMap
  metadata:
    name: filebeat-config
    labels:
      k8s-app: filebeat
      kubernetes.io/cluster-service: "true"
      app: filebeat-config
  data:
    filebeat.yml: |
      processors:
        - add_cloud_metadata:
      filebeat.modules:
      - module: system
      filebeat.inputs:
      - type: log
        paths:
          - /var/log/containers/*.log
        symlinks: true
      output.elasticsearch:
        hosts: ['elasticsearch:9200']
      logging.level: info        
- apiVersion: apps/v1
  kind: Deployment 
  metadata:
    name: filebeat
    labels:
      k8s-app: filebeat
      kubernetes.io/cluster-service: "true"
  spec:
    selector:
      matchLabels:
        app: filebeat
    replicas: 1
    template:
      metadata:
        name: filebeat
        labels:
          app: filebeat
          k8s-app: filebeat
          kubernetes.io/cluster-service: "true"
      spec:
        containers:
        - image: docker.elastic.co/beats/filebeat:6.4.0
          name: filebeat
          args: [
            "-c", "/home/filebeat-config/filebeat.yml",
            "-e",
          ]
          securityContext:
            runAsUser: 0
          volumeMounts:
          - name: filebeat-storage
            mountPath: /var/log/containers
          - name: varlogpods
            mountPath: /var/log/pods
          - name: varlibdockercontainers
            mountPath: /var/lib/docker/containers
          - name: "filebeat-volume"
            mountPath: "/home/filebeat-config"
        volumes:
          - name: filebeat-storage
            hostPath:
              path: /var/log/containers
          - name: varlogpods
            hostPath:
              path: /var/log/pods
          - name: varlibdockercontainers
            hostPath:
              path: /var/lib/docker/containers
          - name: filebeat-volume
            configMap:
              name: filebeat-config
- apiVersion: rbac.authorization.k8s.io/v1
  kind: ClusterRoleBinding
  metadata:
    name: filebeat
  subjects:
  - kind: ServiceAccount
    name: filebeat
    namespace: elk
  roleRef:
    kind: ClusterRole
    name: filebeat
    apiGroup: rbac.authorization.k8s.io
- apiVersion: rbac.authorization.k8s.io/v1
  kind: ClusterRole
  metadata:
    name: filebeat
    labels:
      k8s-app: filebeat
  rules:
  - apiGroups: [""] # "" indicates the core API group
    resources:
    - namespaces
    - pods
    verbs:
    - get
    - watch
    - list
- apiVersion: v1
  kind: ServiceAccount
  metadata:
    name: filebeat
    namespace: elk
    labels:
      k8s-app: filebeat

確認全部組件都已經部署成功:

[root@m1 ~]# kubectl get all -n elk 
NAME                                 READY   STATUS    RESTARTS   AGE
pod/elasticsearch-697c88cd76-xvn4j   1/1     Running   0          4m53s
pod/filebeat-8646b847b7-f58zg        1/1     Running   0          32s
pod/kibana-fc98677d7-9z5dl           1/1     Running   0          8m14s

NAME                             TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)                         AGE
service/elasticsearch            ClusterIP   None            <none>        9200/TCP,9300/TCP               8m14s
service/elasticsearch-nodeport   NodePort    10.96.106.229   <none>        9200:32002/TCP,9300:32003/TCP   8m14s
service/kibana                   NodePort    10.105.91.140   <none>        5601:32001/TCP                  8m14s

NAME                            READY   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/elasticsearch   1/1     1            1           8m14s
deployment.apps/filebeat        1/1     1            1           32s
deployment.apps/kibana          1/1     1            1           8m14s

NAME                                       DESIRED   CURRENT   READY   AGE
replicaset.apps/elasticsearch-697c88cd76   1         1         1       4m53s
replicaset.apps/filebeat-8646b847b7        1         1         1       32s
replicaset.apps/kibana-fc98677d7           1         1         1       8m14s
[root@m1 ~]#

到 Kibana 上建立一個簡單的 Index Pattern:
Service Mesh - Istio實戰篇(下)

建立完成:
Service Mesh - Istio實戰篇(下)

而後在 Discover 頁面就能夠查看到FileBeat收集並存儲在Elastic Search中的日誌數據了:
Service Mesh - Istio實戰篇(下)


集成分佈式追蹤工具

Istio 的分佈式追蹤

  • Istio 的分佈式追蹤基於 Envoy 實現
  • 應用負責傳遞追蹤頭信息(b3 trace header),因此對應用並不是徹底透明,須要應用本身去傳遞報頭
  • b3 這種信息報頭最先由openzipkin提出:https://github.com/openzipkin/b3-propagation
  • 支持採樣率

基於 Envoy 實現的分佈式追蹤的流程以下:
Service Mesh - Istio實戰篇(下)

  • 首先爲流過 Envoy 代理的請求生成 RequestId,以及 TraceHeader 也就是信息報頭
  • 基於請求和響應的元數據生成對應的 TraceSpan,而後把 Span 發送到 Trace 後端
  • 最後再把 Trace 頭轉發到代理的應用節點

部署 Jaeger

接下來咱們利用 Operator 安裝 Jaeger,以此演示 Istio 如何與現存的分佈式追蹤系統進行集成。咱們先簡單瞭解 一下 Operator:

  • 部署和管理 Kubernetes 應用的工具包
  • 部署在集羣中,使用 Kubernetes API 管理應用
  • Operator Framework
    • Operator SDK
    • Operator Lifecycle Manager
      Service Mesh - Istio實戰篇(下)

首先克隆 jaeger-operator 的倉庫:

[root@m1 ~]# cd /usr/local/src
[root@m1 /usr/local/src]# git clone https://github.com/jaegertracing/jaeger-operator.git

修改配置文件,將 WATCH_NAMESPACEvalue 設置爲空,讓其可以追蹤全部命名空間下的請求:

[root@m1 /usr/local/src]# vim jaeger-operator/deploy/operator.yaml
...
        env:
        - name: WATCH_NAMESPACE
          value:
...

建立 jaeger 的 crd:

[root@m1 /usr/local/src]# kubectl apply -f jaeger-operator/deploy/crds/jaegertracing.io_jaegers_crd.yaml 
customresourcedefinition.apiextensions.k8s.io/jaegers.jaegertracing.io created
[root@m1 /usr/local/src]#

而後建立一個命名空間,並將 jaeger 的其餘資源建立在該命名空間下:

$ kubectl create ns observability
$ kubectl apply -f jaeger-operator/deploy/role.yaml -n observability 
$ kubectl apply -f jaeger-operator/deploy/role_binding.yaml -n observability 
$ kubectl apply -f jaeger-operator/deploy/service_account.yaml -n observability 
$ kubectl apply -f jaeger-operator/deploy/cluster_role.yaml -n observability
$ kubectl apply -f jaeger-operator/deploy/cluster_role_binding.yaml -n observability
$ kubectl apply -f jaeger-operator/deploy/operator.yaml -n observability

確認 operator 已正常啓動:

[root@m1 /usr/local/src]# kubectl get all -n observability 
NAME                                   READY   STATUS    RESTARTS   AGE
pod/jaeger-operator-7f76698d98-x9wkh   1/1     Running   0          105s

NAME                              TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)             AGE
service/jaeger-operator-metrics   ClusterIP   10.100.189.227   <none>        8383/TCP,8686/TCP   11s

NAME                              READY   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/jaeger-operator   1/1     1            1           105s

NAME                                         DESIRED   CURRENT   READY   AGE
replicaset.apps/jaeger-operator-7f76698d98   1         1         1       105s
[root@m1 /usr/local/src]#

安裝 jaegers 這個自定義資源,operator 會經過該自定義資源自動幫咱們部署 jaeger:

[root@m1 /usr/local/src]# kubectl apply -f jaeger-operator/examples/simplest.yaml -n observability 
jaeger.jaegertracing.io/simplest created
[root@m1 /usr/local/src]# kubectl get jaegers -n observability 
NAME       STATUS    VERSION   STRATEGY   STORAGE   AGE
simplest   Running   1.21.0    allinone   memory    3m8s
[root@m1 /usr/local/src]#

Jaeger 集成 Istio

將 Jaeger 部署好後,接下來咱們就是將其與 Istio 進行集成。集成很簡單,只須要經過 istioctl 工具設置一些配置變量便可,命令以下:

[root@m1 ~]# istioctl install --set profile=demo -y \
--set values.global.tracer.zipkin.address=simplest-collector.observability:9411 \
--set values.pilot.traceSampling=100
  • Tips:profile 值須要設置爲安裝 Istio 時所設置的值,不然會按默認值從新安裝 Istio

Jaeger 集成 Istio 完成後,還剩最後一步,咱們須要經過注入的方式來把 Jaeger 的 agent 注入到咱們的應用中。Jaeger Operator支持自動注入,咱們只須要在 Annotation 裏增長一個注入的標誌便可。

以前咱們也提到過了 Istio 的 tracing 對應用並非徹底透明的,咱們須要本身在應用中去對 trace header 進行處理。因此爲了測試方便,咱們就使用官方提供的 Bookinfo 應用做爲演示。部署 Bookinfo :

[root@m1 ~]# kubectl apply -f /usr/local/istio-1.8.1/samples/bookinfo/platform/kube/bookinfo.yaml
[root@m1 ~]# kubectl apply -f /usr/local/istio-1.8.1/samples/bookinfo/networking/bookinfo-gateway.yaml

Jaeger 支持針對命名空間或 Deployment 進行注入,以 product 這個 Deployment 爲例,咱們只須要在其 Annotation 中添加一行 sidecar.jaegertracing.io/inject: "true" 便可:

[root@m1 ~]# kubectl edit deployments.apps/productpage-v1
apiVersion: apps/v1
kind: Deployment
metadata:
  annotations:
    sidecar.jaegertracing.io/inject: "true"

    ...

而後經過 patch 命令重建一下 productpage:

[root@m1 ~]# kubectl patch deployment productpage-v1 -p "{\"spec\":{\"template\":{\"metadata\":{\"labels\":{\"date\":\"`date +'%s'`\"}}}}}"
deployment.apps/productpage-v1 patched
[root@m1 ~]#

此時能夠看到 productpage Pod 裏的容器數量增長到3個了,說明 Jaeger 已經將 agent 注入進去了:

[root@m1 ~]# kubectl get pods
NAME                              READY   STATUS    RESTARTS   AGE
productpage-v1-5c75dcd69f-g9sjh   3/3     Running   0          96s
...

使用以下命令打開 Jaeger 的 Web UI 訪問端口:

[root@m1 ~]# kubectl port-forward svc/simplest-query -n observability 16686:16686 --address 192.168.243.138
Forwarding from 192.168.243.138:16686 -> 16686

在頁面上能夠看到 Jaeger 已經能探測到 productpage 服務了:
Service Mesh - Istio實戰篇(下)


調試工具和方法:調試網格的工具和方法有哪些?

Istio 常見的調試方式主要有如下幾種:

  • istioctl 命令行
  • controlZ 控制平面的自檢工具
  • Envoy admin 接口
  • Pilot debug 接口

istioctl 命令行

咱們可使用 --help 參數查看 istioctl 命令的幫助信息:

$ istioctl --help

安裝部署相關

  • istioctl verify-install:可用於驗證當前的k8s集羣環境是否能夠部署 Istio
  • istioctl install [flags]:用於在當前集羣安裝 Istio 環境
  • istioctl profile [list / diff / dump]:操做 Istio 的 profile
  • istioctl kube-inject:用於對Pod注入Envoy sidecar
  • istioctl dashboard [command]:啓動指定的 Istio Dashboard Web UI
    • controlz / envoy / Grafana / jaeger / kiali / Prometheus / zipkin

網格配置狀態檢查

  • istioctl ps &lt;pod-name&gt;:查看網格配置同步狀態。有以下幾種狀態:
    • SYNCED:配置已同步
    • NOT SENT:配置沒有下發
    • STALE:配置下發了,可是Pod並無響應act
  • istioctl pc [cluster/route/…] &lt;pod-name.namespace&gt;:獲取指定資源的網格配置詳情

查看 Pod 相關網格配置信息

istioctl x( experimental )describe pod &lt;pod-name&gt;

  • 驗證是否在網格內
  • 驗證 VirtualService
  • 驗證 DestinationRule
  • 驗證路由

示例:

[root@m1 ~]# istioctl x describe pod productpage-v1-65576bb7bf-4bwwr
Pod: productpage-v1-65576bb7bf-4bwwr
   Pod Ports: 9080 (productpage), 15090 (istio-proxy)
--------------------
Service: productpage
   Port: http 9080/HTTP targets pod port 9080

Exposed on Ingress Gateway http://192.168.243.140
VirtualService: bookinfo
   /productpage, /static*, /login, /logout, /api/v1/products*
[root@m1 ~]#

網格配置診斷

  • istioctl analyze [–n &lt;namespace&gt; / --all-namespaces]:檢查指定命名空間下的網格配置狀況,若是有問題會提示相應的警告或錯誤信息
  • istioctl analyze a.yaml b.yaml my-app-config/:針對單個配置文件或某個目錄下的全部配置文件進行檢查
  • istioctl analyze --use-kube=false a.yaml:以忽略部署平臺的方式去檢查指定的配置文件

controlZ 可視化自檢工具

controlZ 是針對控制平面的可視化自檢工具,其主要功能以下:

  • 調整日誌輸出級別
  • 查看內存使用狀況
  • 查看環境變量
  • 查看進程信息

使用方式以下:

istioctl d controlz <istiod-podname> -n istio-system

Service Mesh - Istio實戰篇(下)

Envoy admin API 接口

Envoy admin API 能夠查看和操做數據平面,其主要功能以下:

  • 日誌級別調整
  • 性能數據分析
  • 配置等信息
  • 指標查看

使用以下命令打開指定Pod的Envoy admin API:

istioctl d envoy <pod-name>.[namespace] --address ${ip}

或經過以下方式開放其端口:

kubectl port-forward <pod-name> 15000:15000 ${ip}

其頁面以下:
Service Mesh - Istio實戰篇(下)

Pilot debug 接口

Pilot debug 接口的主要功能以下:

  • xDS 和配置信息
  • 性能問題分析
  • 配置同步狀況

使用以下命令開放其端口:

kubectl port-forward service/istiod -n istio-system 15014:15014 --address ${ip}

其頁面以下:
Service Mesh - Istio實戰篇(下)

相關文章
相關標籤/搜索