How to get gradients with respect to the inputs in pytorch

This is one way to find adversarial examples of CNN.python

The boilerplate:bash

import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.optim as optim
import numpy as np

  Define a simple network:ui

class lolnet(nn.Module):
    def __init__(self):
        super(lolnet,self).__init__()
        self.a=nn.Linear(in_features=1,out_features=1,bias=False)
        self.a.weight = nn.Parameter(torch.FloatTensor([[0.6]]))
        self.b=nn.Linear(in_features=1,out_features=1,bias=False)
        self.b.weight=nn.Parameter(torch.FloatTensor([[0.6]]))
        
    def forward(self, inputs):
        return self.b(
            self.a(inputs)
        )

  The inputscode

inputs=np.array([[5]])
inputs=torch.from_numpy(inputs).float()
inputs=Variable(inputs)
inputs.requires_grad=True
net=lolnet()

  The optimizerblog

opx=optim.SGD(
    params=[
        {"params":inputs}
    ],lr=0.5
)

  The optimization processinput

for i in range(50):
    x=net(inputs)
    loss=(x-1)**2
    opx.zero_grad() 
    loss.backward()
    opx.step()
    print(net.a.weight.data.numpy()[0][0],inputs.data.numpy()[0][0],loss.data.numpy()[0][0])

  The results are as below:it

0.6 4.712 0.6400001
0.6 4.4613247 0.4848616
0.6 4.243137 0.36732942
0.6 4.0532265 0.27828723
0.6 3.8879282 0.2108294
0.6 3.7440526 0.15972354
0.6 3.6188233 0.1210059
0.6 3.5098238 0.09167358
0.6 3.4149506 0.069451585
0.6 3.332373 0.052616227
0.6 3.2604973 0.039861854
0.6 3.1979368 0.030199187
0.6 3.143484 0.022878764
0.6 3.0960886 0.017332876
0.6 3.0548356 0.013131317
0.6 3.0189288 0.00994824
0.6 2.9876754 0.0075367615
0.6 2.9604726 0.005709796
0.6 2.9367952 0.0043257284
0.6 2.9161866 0.003277142
0.6 2.8982487 0.0024827516
0.6 2.8826356 0.0018809267
0.6 2.869046 0.001424982
0.6 2.8572176 0.0010795629
0.6 2.8469222 0.0008178701
0.6 2.837961 0.00061961624
0.6 2.830161 0.00046941772
0.6 2.8233721 0.000355627
0.6 2.8174632 0.0002694209
0.6 2.81232 0.00020411481
0.6 2.8078432 0.0001546371
0.6 2.8039467 0.00011715048
0.6 2.8005552 8.875507e-05
0.6 2.7976031 6.724081e-05
0.6 2.7950337 5.093933e-05
0.6 2.7927973 3.8591857e-05
0.6 2.7908509 2.9236677e-05
0.6 2.7891567 2.2150038e-05
0.6 2.7876818 1.6781378e-05
0.6 2.7863982 1.2713146e-05
0.6 2.785281 9.631679e-06
0.6 2.7843084 7.296927e-06
0.6 2.783462 5.527976e-06
0.6 2.7827253 4.1880226e-06
0.6 2.782084 3.1727632e-06
0.6 2.7815259 2.4034823e-06
0.6 2.78104 1.821013e-06
0.6 2.7806172 1.3793326e-06
0.6 2.780249 1.044933e-06
0.6 2.7799287 7.9170513e-07

Process finished with exit code 0
相關文章
相關標籤/搜索